
Deep Learning for Analyzing 
Images and Time Series

1 slide by Phillip Isola (OpenAI, UC Berkeley)
nearly all slides by George Chen (CMU)

CMU 95-865 Fall 2017



Image Analysis with 
Convolutional Neural Nets  

(CNNs, also called convnets)



filter

Slide by Phillip Isola

Convolution



filter

Slide by Phillip Isola

Convolution



Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 0 0

0 1 0

0 0 0

Filter 
(also called “kernel”)



Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 0 0

0 1 0

0 0 0

Filter 
(also called “kernel”)



Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 0 0

0 1 0

0 0 0



Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 0 0

0 1 0

0 0 0

Take dot product!



Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 0 0

0 1 0

0 0 0

Take dot product!

Output image



Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 0 0

0 1 0

0 0 0

Take dot product!

0

Output image



Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 0 0

0 1 0

0 0 0

0 1

Output image

Take dot product!



Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 0 0

0 1 0

0 0 0

0 1 1

Output image

Take dot product!



Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 0 0

0 1 0

0 0 0

0 1 1 1

Output image

Take dot product!



Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 0 0

0 1 0

0 0 0

Take dot product!

0 1 1 1 0

Output image



Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 0 0

0 1 0

0 0 0

0 1 1 1 0

1

Output image

Take dot product!



Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 0 0

0 1 0

0 0 0

0 1 1 1 0

1 1

Output image

Take dot product!



Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 1 1 0

1 1 1 1 1

1 1 1 0 0

1 1 1 1 1

0 1 1 1 0

Output image

0 0 0

0 1 0

0 0 0

∗ =



Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 1 1 0

1 1 1 1 1

1 1 1 0 0

1 1 1 1 1

0 1 1 1 0

Output image

0 0 0

0 1 0

0 0 0

∗ =

Note: output image is smaller than input image



Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 1 1 0

1 1 1 1 1

1 1 1 0 0

1 1 1 1 1

0 1 1 1 0

Output image

0 0 0

0 1 0

0 0 0

∗ =

Note: output image is smaller than input image
If you want output size to be same as input, pad 0’s to input



Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 1 1 0

1 1 1 1 1

1 1 1 0 0

1 1 1 1 1

0 1 1 1 0

Output image

0 0 0

0 1 0

0 0 0

∗ =

Note: output image is smaller than input image
If you want output size to be same as input, pad 0’s to input



0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 1 1 0

1 1 1 1 1

1 1 1 0 0

1 1 1 1 1

0 1 1 1 0

Output image

0 0 0

0 1 0

0 0 0

∗ =

Note: output image is smaller than input image
If you want output size to be same as input, pad 0’s to input



0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 1 1 0

1 1 1 1 1

1 1 1 0 0

1 1 1 1 1

0 1 1 1 0

Output image

0 0 0

0 1 0

0 0 0

∗ =

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Note: output image is smaller than input image
If you want output size to be same as input, pad 0’s to input



Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 1 1 0

1 1 1 1 1

1 1 1 0 0

1 1 1 1 1

0 1 1 1 0

Output image

0 0 0

0 1 0

0 0 0

∗ =



Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

3 5 6 5 3

5 8 8 6 3

6 9 8 7 4

5 8 8 6 3

3 5 6 5 3

Output image

1 1 1

1 1 1

1 1 1

∗ =



Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

3 5 6 5 3

5 8 8 6 3

6 9 8 7 4

5 8 8 6 3

3 5 6 5 3

Output image

1 1 1

1 1 1

1 1 1

∗ =1
9

1
9



Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

Output image

-1 -1 -1

2 2 2

-1 -1 -1

∗ =



Convolution

Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution
Very commonly used for:

Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution
Very commonly used for:
• Blurring an image

Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

∗ =

Very commonly used for:
• Blurring an image

Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

∗ =

Very commonly used for:
• Blurring an image

• Finding edges

Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

∗ =

Very commonly used for:
• Blurring an image

• Finding edges

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

(this example finds horizontal edges)
Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

-1 -1 -1

2 2 2

-1 -1 -1

0 -1 0

-1 4 -1

0 -1 0



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

convolve with 
each filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

-1 -1 -1

2 2 2

-1 -1 -1

0 -1 0

-1 4 -1

0 -1 0



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

convolve with 
each filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

-1 -1 -1

2 2 2

-1 -1 -1

0 -1 0

-1 4 -1

0 -1 0



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

convolve with 
each filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

-1 -1 -1

2 2 2

-1 -1 -1

0 -1 0

-1 4 -1

0 -1 0



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

convolve with 
each filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

-1 -1 -1

2 2 2

-1 -1 -1

0 -1 0

-1 4 -1

0 -1 0



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

convolve with 
each filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

-1 -1 -1

2 2 2

-1 -1 -1

0 -1 0

-1 4 -1

0 -1 0

activation (e.g., ReLU)



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

convolve with 
each filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

-1 -1 -1

2 2 2

-1 -1 -1

0 -1 0

-1 4 -1

0 -1 0

activation (e.g., ReLU)



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

convolve with 
each filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

-1 -1 -1

2 2 2

-1 -1 -1

0 -1 0

-1 4 -1

0 -1 0

activation (e.g., ReLU)filters are actually unknown 
and are learned!



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 

and a three 3x3 kernels

Input image

Output images



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 

and a three 3x3 kernels

Input image

Stack output 
images into a 
single “output 
feature map”



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 

and a three 3x3 kernels

Input image

Stack output 
images into a 
single “output 
feature map”

dimensions: 
height, 
width



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 

and a three 3x3 kernels

Input image

Stack output 
images into a 
single “output 
feature map”

dimensions: 
height, 
width

dimensions: 
height-2, 
width-2, 

number of kernels 
(3 in this case)



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 
and k 3x3 kernels

Input image

Stack output 
images into a 
single “output 
feature map”

dimensions: 
height, 
width

dimensions: 
height-2, 
width-2, 

k



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 
and k 3x3xd kernels

Input image

Stack output 
images into a 
single “output 
feature map”

dimensions: 
height, 
width, 

depth d (# channels)

dimensions: 
height-2, 
width-2, 

k



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 
and k 3x3xd kernels

Input image

Stack output 
images into a 
single “output 
feature map”

dimensions: 
height, 
width, 

depth d (# channels)

dimensions: 
height-2, 
width-2, 

k
technical detail: there’s 

also a bias vector



Pooling



Pooling

• Aggregate local information



Pooling

• Aggregate local information

• Produces a smaller image 
(each resulting pixel captures some “global” information)



Max Pooling
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =



Max Pooling
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

0 1 3 1 0

1 1 1 3 3

0 0 0 0 0

1 1 1 3 3

0 1 3 1 0

Output image 
after ReLU



Max Pooling
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

0 1 3 1 0

1 1 1 3 3

0 0 0 0 0

1 1 1 3 3

0 1 3 1 0

Output image 
after ReLU

Output after 
max pooling



Max Pooling
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

0 1 3 1 0

1 1 1 3 3

0 0 0 0 0

1 1 1 3 3

0 1 3 1 0

Output image 
after ReLU

Output after 
max pooling



Max Pooling
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

0 1 3 1 0

1 1 1 3 3

0 0 0 0 0

1 1 1 3 3

0 1 3 1 0

Output image 
after ReLU

1

Output after 
max pooling



Max Pooling
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

0 1 3 1 0

1 1 1 3 3

0 0 0 0 0

1 1 1 3 3

0 1 3 1 0

Output image 
after ReLU

1 3

Output after 
max pooling



Max Pooling
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

0 1 3 1 0

1 1 1 3 3

0 0 0 0 0

1 1 1 3 3

0 1 3 1 0

Output image 
after ReLU

1 3

1

Output after 
max pooling



Max Pooling
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

0 1 3 1 0

1 1 1 3 3

0 0 0 0 0

1 1 1 3 3

0 1 3 1 0

Output image 
after ReLU

1 3

1 3

Output after 
max pooling



Max Pooling
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

0 1 3 1 0

1 1 1 3 3

0 0 0 0 0

1 1 1 3 3

0 1 3 1 0

Output image 
after ReLU

1 3

1 3

Output after 
max pooling



Max Pooling
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

0 1 3 1 0

1 1 1 3 3

0 0 0 0 0

1 1 1 3 3

0 1 3 1 0

Output image 
after ReLU

1 3

1 3

Output after 
max pooling

What numbers were involved in computing this 1?



Max Pooling
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

0 1 3 1 0

1 1 1 3 3

0 0 0 0 0

1 1 1 3 3

0 1 3 1 0

Output image 
after ReLU

1 3

1 3

Output after 
max pooling

What numbers were involved in computing this 1?



Max Pooling
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

0 1 3 1 0

1 1 1 3 3

0 0 0 0 0

1 1 1 3 3

0 1 3 1 0

Output image 
after ReLU

1 3

1 3

Output after 
max pooling

What numbers were involved in computing this 1?



Max Pooling
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

0 1 3 1 0

1 1 1 3 3

0 0 0 0 0

1 1 1 3 3

0 1 3 1 0

Output image 
after ReLU

1 3

1 3

Output after 
max pooling

What numbers were involved in computing this 1?



Max Pooling
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

0 1 3 1 0

1 1 1 3 3

0 0 0 0 0

1 1 1 3 3

0 1 3 1 0

Output image 
after ReLU

1 3

1 3

Output after 
max pooling

What numbers were involved in computing this 1?
In this example: 1 pixel in max pooling output 

captures information from 16 input pixels!



Max Pooling
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

0 1 3 1 0

1 1 1 3 3

0 0 0 0 0

1 1 1 3 3

0 1 3 1 0

Output image 
after ReLU

1 3

1 3

Output after 
max pooling

What numbers were involved in computing this 1?
In this example: 1 pixel in max pooling output 

captures information from 16 input pixels!
Example: applying max pooling again results in a 

single pixel that captures info from entire input image!



Basic Building Block of CNN’s

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 

and k kernels

Input image



Basic Building Block of CNN’s

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 

and k kernels

Input image

stack of images



Basic Building Block of CNN’s

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 

and k kernels

Input image
max pooling 

(applied to each 
image in stack)

stack of images



Basic Building Block of CNN’s

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 

and k kernels

Input image
max pooling 

(applied to each 
image in stack)

stack of images

output stack of 
smaller images



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image
dense layer with 

10 neurons, 
softmax activation

Training label: 6

Loss/“error” error
Popular loss function for 

classification (> 2 classes): 
categorical cross entropy

Error is 
averaged 

across training 
examples

dense layer 
with 512 

neurons, ReLU 
activation

1
Pr(digit 6)log

Learning this neural net 
means learning parameters 

of both dense layers!



Handwritten Digit Recognition

28x28 image dense, 
softmax

Training label: 6

Loss/“error” error

dense, 
ReLU

conv2d, 
ReLU

max 
pooling

2d



Handwritten Digit Recognition

28x28 image dense, 
softmax

Training label: 6

Loss

error

dense, 
ReLU

conv2d, 
ReLU

max 
pooling

2d

conv2d, 
ReLU

max 
pooling

2d



Handwritten Digit Recognition

28x28 image dense, 
softmax

Training label: 6

Loss

error

dense, 
ReLU

conv2d, 
ReLU

max 
pooling

2d

conv2d, 
ReLU

max 
pooling

2d

extract low-level visual 
features & aggregate



Handwritten Digit Recognition

28x28 image dense, 
softmax

Training label: 6

Loss

error

dense, 
ReLU

conv2d, 
ReLU

max 
pooling

2d

conv2d, 
ReLU

max 
pooling

2d

extract low-level visual 
features & aggregate

extract higher-level visual 
features & aggregate



Handwritten Digit Recognition

28x28 image dense, 
softmax

Training label: 6

Loss

error

dense, 
ReLU

conv2d, 
ReLU

max 
pooling

2d

conv2d, 
ReLU

max 
pooling

2d

extract low-level visual 
features & aggregate

extract higher-level visual 
features & aggregate

non-vision-specific 
classification neural net



CNN Demo



CNN’s



CNN’s
• Learn convolution filters for extracting simple features



CNN’s
• Learn convolution filters for extracting simple features

• Max pooling aggregates local information



CNN’s
• Learn convolution filters for extracting simple features

• Max pooling aggregates local information

• Can then repeat the above two layers to learn features from 
increasingly higher-level representations



CNN’s
• Learn convolution filters for extracting simple features

• Max pooling aggregates local information

• Can then repeat the above two layers to learn features from 
increasingly higher-level representations

• Convolution filters are shift-invariant



CNN’s
• Learn convolution filters for extracting simple features

• Max pooling aggregates local information

• Can then repeat the above two layers to learn features from 
increasingly higher-level representations

• Convolution filters are shift-invariant

• In terms of invariance to an object shifting within the input 
image, this is roughly achieved by pooling



Recurrent Neural Networks  
(RNNs)



RNNs



RNNs
What we’ve seen so far are “feedforward” NNs



RNNs
What we’ve seen so far are “feedforward” NNs



RNNs
What we’ve seen so far are “feedforward” NNs



RNNs
What we’ve seen so far are “feedforward” NNs



RNNs
What we’ve seen so far are “feedforward” NNs



RNNs
What we’ve seen so far are “feedforward” NNs

What if we had a video?



RNNs

… …

Time 0

Time 1

Time 2



RNNs

… …

Feedforward NN’s: 
treat each video frame 

separately

Time 0

Time 1

Time 2



RNNs Feedforward NN’s: 
treat each video frame 

separately

… …

RNN’s: 
feed output at previous 

time step as input to 
RNN layer at current 

time step

Time 0

Time 1

Time 2



RNNs Feedforward NN’s: 
treat each video frame 

separately

… …

RNN’s: 
feed output at previous 

time step as input to 
RNN layer at current 

time step

In keras, different 
RNN options: 

SimpleRNN, LSTM

Time 0

Time 1

Time 2



RNNs Feedforward NN’s: 
treat each video frame 

separately

… …

RNN’s: 
feed output at previous 

time step as input to 
RNN layer at current 

time step

In keras, different 
RNN options: 

SimpleRNN, LSTM

Recommendation: 
use LSTMs if you want 
to have longer memory 
(long range structure)

Time 0

Time 1

Time 2



RNNs Feedforward NN’s: 
treat each video frame 

separately

RNN’s: 
feed output at previous 

time step as input to 
RNN layer at current 

time step

In keras, different 
RNN options: 

SimpleRNN, LSTM

Recommendation: 
use LSTMs if you want 
to have longer memory 
(long range structure)

Time series



RNNs Feedforward NN’s: 
treat each video frame 

separately

RNN’s: 
feed output at previous 

time step as input to 
RNN layer at current 

time step

In keras, different 
RNN options: 

SimpleRNN, LSTM

Recommendation: 
use LSTMs if you want 
to have longer memory 
(long range structure)

LSTM layerTime series



RNNs Feedforward NN’s: 
treat each video frame 

separately

RNN’s: 
feed output at previous 

time step as input to 
RNN layer at current 

time step

In keras, different 
RNN options: 

SimpleRNN, LSTM

Recommendation: 
use LSTMs if you want 
to have longer memory 
(long range structure)

like a dense layer 
that has memory

LSTM layerTime series



RNNs Feedforward NN’s: 
treat each video frame 

separately

RNN’s: 
feed output at previous 

time step as input to 
RNN layer at current 

time step

In keras, different 
RNN options: 

SimpleRNN, LSTM

Recommendation: 
use LSTMs if you want 
to have longer memory 
(long range structure)

like a dense layer 
that has memory

LSTM layer

readily chains together with 
other neural net layers

Time series



RNNs Feedforward NN’s: 
treat each video frame 

separately

RNN’s: 
feed output at previous 

time step as input to 
RNN layer at current 

time step

In keras, different 
RNN options: 

SimpleRNN, LSTM

Recommendation: 
use LSTMs if you want 
to have longer memory 
(long range structure)

like a dense layer 
that has memory

LSTM layer

readily chains together with 
other neural net layers

CN
N

Time series



RNNs Feedforward NN’s: 
treat each video frame 

separately

RNN’s: 
feed output at previous 

time step as input to 
RNN layer at current 

time step

In keras, different 
RNN options: 

SimpleRNN, LSTM

Recommendation: 
use LSTMs if you want 
to have longer memory 
(long range structure)

like a dense layer 
that has memory

LSTM layer

readily chains together with 
other neural net layers

CN
N

Time series

Cl
as

sifi
er



RNNs

LSTM layer

Text Positive/negative 
sentiment

Example: Given text (e.g., movie review, Tweet), figure out whether 
it has positive or negative sentiment (binary classification)

Cl
as

sifi
er



RNNs

LSTM layer

Text Positive/negative 
sentiment

Example: Given text (e.g., movie review, Tweet), figure out whether 
it has positive or negative sentiment (binary classification)

Common first step for text: 
turn words into vector 

representations that are 
semantically meaningful

Cl
as

sifi
er



RNNs

LSTM layer

Text Positive/negative 
sentiment

Example: Given text (e.g., movie review, Tweet), figure out whether 
it has positive or negative sentiment (binary classification)

Common first step for text: 
turn words into vector 

representations that are 
semantically meaningful

In keras, use 
Embedding layer

Cl
as

sifi
er



RNNs

LSTM layer

Text Positive/negative 
sentiment

Example: Given text (e.g., movie review, Tweet), figure out whether 
it has positive or negative sentiment (binary classification)

Common first step for text: 
turn words into vector 

representations that are 
semantically meaningful

In keras, use 
Embedding layer

Em
be

dd
in

g

Cl
as

sifi
er



RNNs

LSTM layer

Text Positive/negative 
sentiment

Example: Given text (e.g., movie review, Tweet), figure out whether 
it has positive or negative sentiment (binary classification)

Common first step for text: 
turn words into vector 

representations that are 
semantically meaningful

In keras, use 
Embedding layer

Em
be

dd
in

g

Cl
as

sifi
er

Classification with > 2 classes: 
dense layer, softmax activation



RNNs

LSTM layer

Text Positive/negative 
sentiment

Example: Given text (e.g., movie review, Tweet), figure out whether 
it has positive or negative sentiment (binary classification)

Common first step for text: 
turn words into vector 

representations that are 
semantically meaningful

In keras, use 
Embedding layer

Em
be

dd
in

g

Cl
as

sifi
er

Classification with > 2 classes: 
dense layer, softmax activation

Classification with 2 classes: 
dense layer with 1 neuron, 

sigmoid activation



RNNs

Demo



RNNs



RNNs

• Neatly handles time series in which there is some sort of 
global structure, so memory helps



RNNs

• Neatly handles time series in which there is some sort of 
global structure, so memory helps

• If time series doesn’t actually have global structure, 
performance gain from using RNNs could be little 
compared to using 1D CNNs



RNNs

• Neatly handles time series in which there is some sort of 
global structure, so memory helps

• If time series doesn’t actually have global structure, 
performance gain from using RNNs could be little 
compared to using 1D CNNs

• An RNN layer should be chained together with other layers 
that learn a semantically meaningful interpretation from data 
(e.g., CNNs for images, word embeddings like word2vec/
GloVe for text)


