Carnegie Mellon University HeinzCollege

Deep Learning for Analyzing Images and Time Series

nearly all slides by George Chen (CMU)
1 slide by Phillip Isola (OpenAI, UC Berkeley)

Image Analysis with Convolutional Neural Nets (CNNs, also called convnets)

Convolution

Slide by Phillip Isola

Convolution

filter

Slide by Phillip Isola

Convolution

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	0
0	1	0
0	0	0

Filter
(also called "kernel")
Input image

Convolution

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	0
0	1	0
0	0	0

Filter
(also called "kernel")
Input image

Convolution

$\mathrm{O}_{\mathbf{0}}$	0_{0}	0_{0}	0	0	0	0
$\mathrm{O}_{\mathbf{0}}$	$0_{\mathbf{1}}$	${ }^{1} \mathbf{0}$	1	1	0	0
$0_{\mathbf{0}}$	1_{0}	${ }^{1} \mathbf{0}$	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input image

Convolution

Take dot product!

$0_{\mathbf{0}}$	0_{0}	0_{0}	0	0	0	0
$0_{\mathbf{0}}$	$0_{\mathbf{1}}$	1_{0}	1	1	0	0
$0_{\mathbf{0}}$	1_{0}	1_{0}	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input image

Convolution

Take dot product!

$0_{\mathbf{0}}$	$0_{\mathbf{0}}$	0_{0}	0	0	0	0
$0_{\mathbf{0}}$	$0_{\mathbf{1}}$	1_{0}	1	1	0	0
$0_{\mathbf{0}}$	1_{0}	1_{0}	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input image
Output image

Convolution

Take dot product!

0_{0}	0_{0}	0_{0}	0	0	0	0
0_{0}	$0_{\mathbf{1}}$	${ }^{1} \mathbf{0}$	1	1	0	0
0_{0}	${ }^{1} \mathbf{0}$	${ }^{1} \mathbf{0}$	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input image

Output image

Convolution

Take dot product!

0	$0_{\mathbf{0}}$	0_{0}	0_{0}	0	0	0
0	$0_{\mathbf{0}}$	$1_{\mathbf{1}}^{1}$	${ }^{1} \mathbf{0}$	1	0	0
0	1_{0}	1_{0}	${ }^{1}$	$\mathbf{0}$	1	1
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input image

Output image

Convolution

Take dot product!

0	0	0_{0}	$0_{\mathbf{0}}$	0_{0}	0	0
0	0	1_{0}	$1_{\mathbf{1}}$	1_{0}	0	0
0	1	1_{0}	1_{0}	1_{0}	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input image

Output image

Convolution

Take dot product!

0	0	0	$0_{\mathbf{0}}$	$0_{\mathbf{0}}$	$0_{\mathbf{0}}$	0
0	0	1	$1_{\mathbf{0}}$	$1_{\mathbf{1}}$	$0_{\mathbf{0}}$	0
0	1	1	$1_{\mathbf{0}}$	$1_{\mathbf{0}}$	$1_{\mathbf{0}}$	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input image

Output image

Convolution

Take dot product!

0	0	0	0	0_{0}	$0_{\mathbf{0}}$	$0_{\mathbf{0}}$
0	0	1	1	1_{0}	$0_{\mathbf{1}}$	$0_{\mathbf{0}}$
0	1	1	1	$1_{\mathbf{0}}$	$1_{\mathbf{0}}$	$0_{\mathbf{0}}$
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input image

Output image

Convolution

Take dot product!
$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0_{0} & 0 & 0 & 1 & 0 & 1 & 1\end{array}\right] 0$

Input image

0	1	1	1	0
1				

Output image

Convolution

Take dot product!

0	0	0	0	0	0	0
0	0_{0}	${ }^{1} \mathbf{0}$	${ }^{1}$	0	1	0
0	${ }^{1} \mathbf{0}$	${ }^{1}$	$\mathbf{1}$	${ }^{1}$	0	1
1	1	0				
0	${ }^{1} \mathbf{0}$	${ }^{1}$	0	${ }^{1}$	0	0
0	0	0				
0	1_{1}	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input image

0	1	1	1	0
1	1			

Output image

Convolution

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

* | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |$=$| 0 | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 |

Input image

Output image

Convolution

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

$*$| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |$=$| 0 | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 |

Input image
Output image
Note: output image is smaller than input image

Convolution

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

$*$| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |$=$| 0 | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 |

Input image
Output image
Note: output image is smaller than input image
If you want output size to be same as input, pad 0's to input

Convolution

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

* | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |$=$| 0 | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 |

Input image
Output image
Note: output image is smaller than input image
If you want output size to be same as input, pad O's to input

Convolution

$\mathbf{0}$	0							
$\mathbf{0}$	0	0	0	0	0	0	0	0
$\mathbf{0}$	0	0	1	1	1	0	0	0
$\mathbf{0}$	0	1	1	1	1	1	0	0
$\mathbf{0}$	0	1	1	1	0	0	0	0
$\mathbf{0}$	0	1	1	1	1	1	0	0
$\mathbf{0}$	0	0	1	1	1	0	0	0
$\mathbf{0}$	0	0	0	0	0	0	0	0
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0	0	0	0

$*$| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |$=$| 0 | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 |

Input image
Output image
Note: output image is smaller than input image
If you want output size to be same as input, pad O's to input

Convolution

$\mathbf{0}$	0	0						
$\mathbf{0}$	0	0	0	0	0	0	0	0
$\mathbf{0}$	0	0	1	1	1	0	0	0
$\mathbf{0}$	0	1	1	1	1	1	0	0
$\mathbf{0}$	0	1	1	1	0	0	0	0
$\mathbf{0}$	0	1	1	1	1	1	0	0
$\mathbf{0}$	0	0	1	1	1	0	0	0
$\mathbf{0}$	0	0	0	0	0	0	0	0
$\mathbf{0}$	0							

* | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |$=$| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Input image
Note: output image is smaller than input image
If you want output size to be same as input, pad O's to input

Convolution

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

* | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |$=$| 0 | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 |

Input image

Output image

Convolution

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

* | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |$=$| 3 | 5 | 6 | 5 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 5 | 8 | 8 | 6 | 3 |
| 6 | 9 | 8 | 7 | 4 |
| 5 | 8 | 8 | 6 | 3 |
| 3 | 5 | 6 | 5 | 3 |

Input image

Output image

Convolution

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input image

Output image

Convolution

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

* | $\mathbf{- 1}$ | $\mathbf{- 1}$ | $\mathbf{- 1}$ |
| :---: | :---: | :---: |
| $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{2}$ |
| $\mathbf{- 1}$ | $\mathbf{- 1}$ | $\mathbf{- 1}$ |$=$| 0 | 1 | 3 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 3 | 3 |
| 0 | 0 | -2 | -4 | -4 |
| 1 | 1 | 1 | 3 | 3 |
| 0 | 1 | 3 | 1 | 0 |

Input image

Output image

Convolution

Convolution

Very commonly used for:

Convolution

Very commonly used for:

- Blurring an image

Convolution

Very commonly used for:

- Blurring an image

Convolution

Very commonly used for:

- Blurring an image

- Finding edges

Convolution

Very commonly used for:

- Blurring an image

- Finding edges

(this example finds horizontal edges)
Images from: http://aishack.in/tutorials/image-convolution-examples/

Convolution Layer

Convolution Layer

Convolution Layer

Convolution Layer

Convolution Layer

Convolution Layer

Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Convolution Layer

activation (e.g., ReLU)

Convolution Layer

activation (e.g., ReLU)

Convolution Layer

filters are actually unknown and are learned!
activation (e.g., ReLU)

Images from: http://aishack.in/tutorials/image-convolution-examples/

Convolution Layer

Convolution Layer

Convolution Layer

Input image
dimensions:
height,
width

Stack output images into a single "output feature map"

Convolution Layer

Input image
dimensions:
height, width

Stack output images into a single "output feature map"
dimensions:
height-2,
width-2,
number of kernels
(3 in this case)

Convolution Layer

Convolution Layer

Input image
dimensions:
height, width,

Stack output images into a single "output feature map"
dimensions:
height-2,
width-2,

with ReLu activation and $k 3 \times 3 \times d$ kernels

Convolution Layer

Input image
dimensions:
height, width,

Stack output images into a single "output feature map"
dimensions:
height-2,
width-2,

Pooling

Pooling

- Aggregate local information

Pooling

- Aggregate local information
- Produces a smaller image (each resulting pixel captures some "global" information)

Max Pooling

Input image

Max Pooling

0	0	0	0	0	0	0														
0	0	1	1	1	0	0					0	1	3	1	0	0	1	3	1	0
0	1	1	1	1	1	0		-1	-1	-1	1	1	1	3	3	1	1	1	3	3
0	1	1	1	0	0	0	*	2	2	$2=$	0	0	-2	-4	-4	0	0	0	0	0
0	1	1	1	1	1	0		-1	-1	-1	1	1	1	3	3	1	1	1	3	3
0	0	1	1	1	0	0					0	1	3	1	0	0	1	3	1	0
0	0	0	0	0	0	0										Output image				
Input image																after ReLU				

Max Pooling

Input image

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

Output after max pooling

Max Pooling

Input image

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

Output after max pooling

Max Pooling

Input image

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

Output after max pooling

Max Pooling

0	0	0	0	0	0	0										
0	0	1	1	1	0	0						0	1	3	1	0
0	1	1	1	1	1	0		-1	-1	-1	=	1	1	1	3	3
0	1	1	1	0	0	0	*	2	2	2		0	0	-2	-4	-4
0	1	1	1	1	1	0		-1	-1	-1		1	1	1	3	3
0	0	1	1	1	0	0						0	1	3	1	0

Input image

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

1	3

Output after max pooling

Max Pooling

0	0	0	0	0	0	0										
0	0	1	1	1	0	0						0	1	3	1	0
0	1	1	1	1	1	0		-1	-1	-1	=	1	1	1	3	3
0	1	1	1	0	0	0	*	2	2	2		0	0	-2	-4	-4
0	1	1	1	1	1	0		-1	-1	-1		1	1	1	3	3
0	0	1	1	1	0	0						0	1	3	1	0

Input image

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

1	3
1	

Output after max pooling

Max Pooling

0	0	0	0	0	0	0										
0	0	1	1	1	0	0						0	1	3	1	0
0	1	1	1	1	1	0		-1	-1	-1	=	1	1	1	3	3
0	1	1	1	0	0	0	*	2	2	2		0	0	-2	-4	-4
0	1	1	1	1	1	0		-1	-1	-1		1	1	1	3	3
0	0	1	1	1	0	0						0	1	3	1	0

Input image

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

1	3
1	3

Output after max pooling

Max Pooling

0	0	0	0	0	0	0										
0	0	1	1	1	0	0						0	1	3	1	0
0	1	1	1	1	1	0		-1	-1	-1	=	1	1	1	3	3
0	1	1	1	0	0	0	*	2	2	2		0	0	-2	-4	-4
0	1	1	1	1	1	0		-1	-1	-1		1	1	1	3	3
0	0	1	1	1	0	0						0	1	3	1	0

Input image

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

1	3
1	3

Output after max pooling

Max Pooling

Input image

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

What numbers were involved in computing this 1?

Output after max pooling

Max Pooling

Input image

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

What numbers were involved in computing this 1?

Output after max pooling

Max Pooling

Input image

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

What numbers were involved in computing this 1?

Output after max pooling

Max Pooling

Input image

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

What numbers were involved in computing this 1?

Output after max pooling

Max Pooling

Input image

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

What numbers were involved in computing this 1?
In this example: 1 pixel in max pooling output captures information from 16 input pixels!

Output after max pooling

Max Pooling

Input image

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

What numbers were involved in computing this 1 ?
In this example: 1 pixel in max pooling output captures information from 16 input pixels!
Example: applying max pooling again results in a single pixel that captures info from entire input image!

Output after max pooling

Basic Building Block of CNN's

conv2d layer
with ReLu activation
and k kernels

Basic Building Block of CNN's

Basic Building Block of CNN's

Basic Building Block of CNN's

Handwritten Digit Recognition

Training label: 6

28x28 image
length 784 vector (784 input neurons)

Learning this neural net means learning parameters of both dense layers!

Popular loss function for classification (> 2 classes): categorical cross entropy dense layer dense layer with with 51210 neurons, neurons, ReLU softmax activation activation

Handwritten Digit Recognition

Training label: 6

Handwritten Digit Recognition

Training label: 6

Handwritten Digit Recognition

Training label: 6
extract low-level visual
features \& aggregate

$28 x 28$ image
conv2á ReLU pooling ReLU pooling ReLU softmax 2d

error

Handwritten Digit Recognition

Training label: 6
extract low-level visual
features \& aggregate
$28 x 28$ image
conv2d, mā conv2̄ ReLU pooling ReLU pooling ReLU softmax 2d 2d
extract higher-level visual features \& aggregate

Handwritten Digit Recognition

Training label: 6
extract low-level visual features \& aggregate
non-vision-specific classification neural net

 ReLU pooling ReLU pooling ReLU softmax 2d 2d
extract higher-level visual features \& aggregate

CNN Demo

CNN's

CNN's

- Learn convolution filters for extracting simple features

CNN's

- Learn convolution filters for extracting simple features
- Max pooling aggregates local information

CNN's

- Learn convolution filters for extracting simple features
- Max pooling aggregates local information
- Can then repeat the above two layers to learn features from increasingly higher-level representations

CNNN'S

- Learn convolution filters for extracting simple features
- Max pooling aggregates local information
- Can then repeat the above two layers to learn features from increasingly higher-level representations
- Convolution filters are shift-invariant

CNN's

- Learn convolution filters for extracting simple features
- Max pooling aggregates local information
- Can then repeat the above two layers to learn features from increasingly higher-level representations
- Convolution filters are shift-invariant
- In terms of invariance to an object shifting within the input image, this is roughly achieved by pooling

Recurrent Neural Networks (RNNs)

RNNs

RNNs

What we've seen so far are "feedforward" NNs

RNNs

What we've seen so far are "feedforward" NNs

RNNs

What we've seen so far are "feedforward" NNs

RNNs

What we've seen so far are "feedforward" NNs

RNNs

What we've seen so far are "feedforward" NNs

RNNs

What we've seen so far are "feedforward" NNs

What if we had a video?

RNNs

RNNs

Feedforward NN's: treat each video frame separately

RNNs

RNNs

RNNs

Feedforward NN's: treat each video frame separately

RNN's:

feed output at previous time step as input to RNN layer at current
RNN layer at current
time step
In keras, different RNN options: SimpleRNN, LSTM
Time series

Recommendation: use LSTMs if you want to have longer memory (long range structure)

Feedforward NN's: treat each video frame separately

RNN's:

feed output at previous time step as input to

LSTM layer

RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM

Recommendation: use LSTMs if you want to have longer memory (long range structure)

Feedforward NN's: treat each video frame separately

RNN's:

feed output at previous time step as input to
RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM LSTM layer
like a dense layer
that has memory

Recommendation: use LSTMs if you want to have longer memory (long range structure)

RNNs

Feedforward NN's: treat each video frame separately

RNN's:

readily chains together with feed output at previous other neural net layers

Time series

LSTM layer
like a dense layer
that has memory
time step as input to
RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM

Recommendation: use LSTMs if you want to have longer memory (long range structure)

RNNs

Feedforward NN's: treat each video frame separately

RNN's:

readily chains together with feed output at previous other neural net layers

Time series

LSTM layer
like a dense layer
that has memory
time step as input to
RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM

Recommendation: use LSTMs if you want to have longer memory (long range structure)

RNNs

Feedforward NN's: treat each video frame separately

RNN's:

readily chains together with other neural net layers

Time series

LSTM layer
like a dense layer
that has memory
feed output at previous time step as input to RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM

Recommendation: use LSTMs if you want to have longer memory (long range structure)

RNNs

Example: Given text (e.g., movie review, Tweet), figure out whether it has positive or negative sentiment (binary classification)

RNNs

Example: Given text (e.g., movie review, Tweet), figure out whether it has positive or negative sentiment (binary classification)

RNNs

Example: Given text (e.g., movie review, Tweet), figure out whether it has positive or negative sentiment (binary classification)

In keras, use
Embedding layer

RNNs

Example: Given text (e.g., movie review, Tweet), figure out whether it has positive or negative sentiment (binary classification)

In keras, use
Embedding layer

RNNs

Example: Given text (e.g., movie review, Tweet), figure out whether it has positive or negative sentiment (binary classification)

In keras, use
Embedding layer

RNNs

Example: Given text (e.g., movie review, Tweet), figure out whether it has positive or negative sentiment (binary classification)

semantically meaningful
turn words into vector representations that are

In keras, use
Embedding layer

Classification with 2 classes: dense layer with 1 neuron, sigmoid activation

RNNs

Demo

RNNs

RNNs

- Neatly handles time series in which there is some sort of global structure, so memory helps

RNNs

- Neatly handles time series in which there is some sort of global structure, so memory helps
- If time series doesn't actually have global structure, performance gain from using RNNs could be little compared to using 1D CNNs

RNNs

- Neatly handles time series in which there is some sort of global structure, so memory helps
- If time series doesn't actually have global structure, performance gain from using RNNs could be little compared to using 1D CNNs
- An RNN layer should be chained together with other layers that learn a semantically meaningful interpretation from data (e.g., CNNs for images, word embeddings like word2vec/ GloVe for text)

