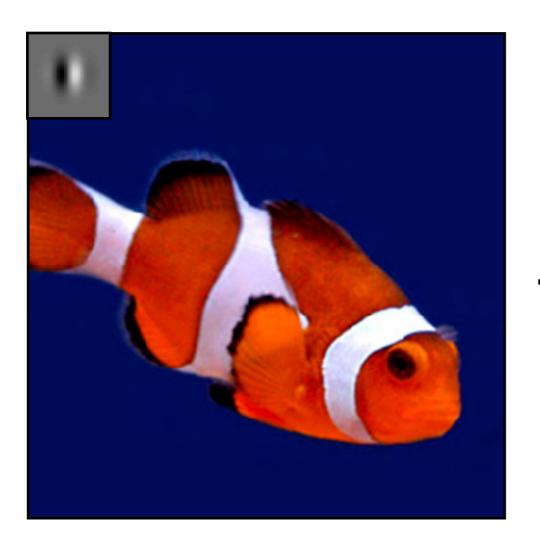


Deep Learning for Analyzing Images and Time Series

nearly all slides by George Chen (CMU) 1 slide by Phillip Isola (OpenAI, UC Berkeley)

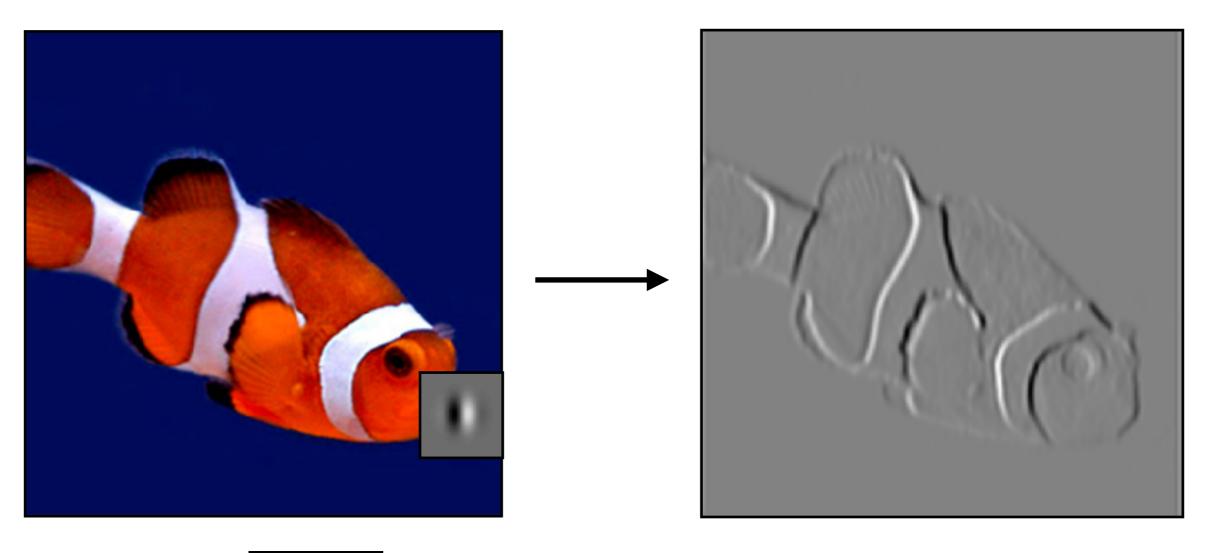
CMU 95-865 Fall 2017

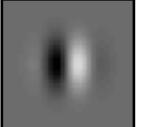
Image Analysis with Convolutional Neural Nets (CNNs, also called convnets)





Slide by Phillip Isola





Slide by Phillip Isola

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	0
0	1	0
0	0	0

Filter (also called "kernel")

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	0
0	1	0
0	0	0

Filter (also called "kernel")

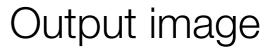
00	00	00	0	0	0	0
00	01	¹ 0	1	1	0	0
0	¹ 0	¹ 0	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Take dot product!

00	00	00	0	0	0	0
00	01	¹ 0	1	1	0	0
0	¹ 0	¹ 0	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Take dot product!

00	00	00	0	0	0	0
00	01	¹ 0	1	1	0	0
0 ⁰	¹ 0	¹ 0	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0



Take dot product!

00	00	00	0	0	0	0
00	01	¹ 0	1	1	0	0
00	¹ 0	¹ 0	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0		

Input image

Take dot product!

0	00	00	00	0	0	0
0	0 0	¹ 1	¹ 0	1	0	0
0	¹ 0	¹ 0	¹ 0	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1		

Input image

Take dot product!

0	0	00	00	00	0	0
0	0	1 0	¹ 1	¹ 0	0	0
0	1	¹ 0	¹ 0	¹ 0	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1	1	

Input image

Take dot product!

0	0	0	00	00	00	0
0	0	1	1 0	¹ 1	00	0
0	1	1	¹ 0	¹ 0	¹ 0	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

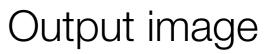
0	1	1	1	

Input image

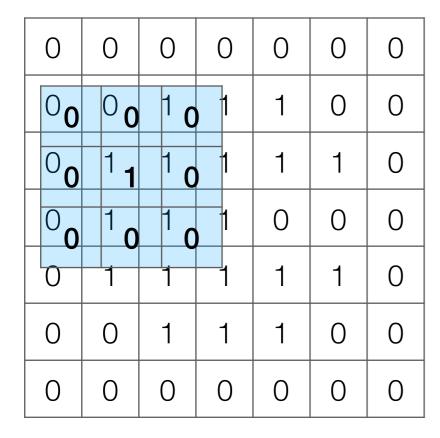
Take dot product!

0	0	0	0	O0	00	00
0	0	1	1	1 0	01	00
0	1	1	1	¹ 0	¹ 0	00
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1	1	1	0



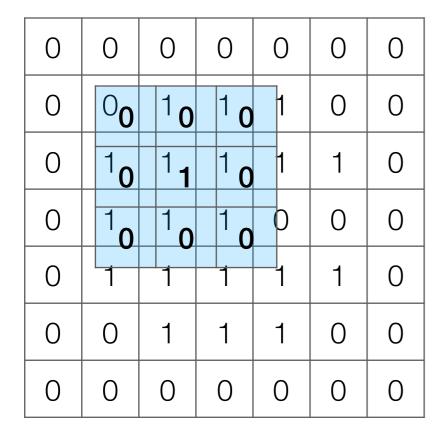
Take dot product!



0	1	1	1	0
1				

Input image

Take dot product!



0	1	1	1	0
1	1			

Output image

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	0
0	1	0
0	0	0

*

=

0	1	1	1	0
1	1	1	1	1
1	1	1	0	0
1	1	1	1	1
0	1	1	1	0

Input image

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

			l
0	0	0	
0	1	0	=
0	0	0	

*

0	1	1	1	0
1	1	1	1	1
1	1	1	0	0
1	1	1	1	1
0	1	1	1	0

Input image

Output image

Note: output image is smaller than input image

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

1				
	0	0	0	
	0	1	0	=
	0	0	0	

*

0	1	1	1	0
1	1	1	1	1
1	1	1	0	0
1	1	1	1	1
0	1	1	1	0

Input image

Output image

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

	0	0	0	
*	0	1	0	=
	0	0	0	

0	1	1	1	0
1	1	1	1	1
1	1	1	0	0
1	1	1	1	1
0	1	1	1	0

Input image

Output image

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0
0	0	1	1	1	1	1	0	0
0	0	1	1	1	0	0	0	0
0	0	1	1	1	1	1	0	0
0	0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

0	0	0	
0	1	0	=
0	0	0	

*

0	1	1	1	0
1	1	1	1	1
1	1	1	0	0
1	1	1	1	1
0	1	1	1	0

Input image

Output image

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0
0	0	1	1	1	1	1	0	0
0	0	1	1	1	0	0	0	0
0	0	1	1	1	1	1	0	0
0	0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

0	0	0	
0	1	0	=
0	0	0	

*

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input image

Output image

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	0
0	1	0
0	0	0

*

=

0	1	1	1	0
1	1	1	1	1
1	1	1	0	0
1	1	1	1	1
0	1	1	1	0

Input image

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

1	1	1
1	1	1
1	1	1

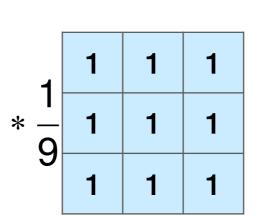
=

*

3	5	6	5	3
5	8	8	6	З
6	9	8	7	4
5	8	8	6	3
3	5	6	5	3

Input image

0	0	0	0	0	0	0	
0	0	1	1	1	0	0	
0	1	1	1	1	1	0	
0	1	1	1	0	0	0	*
0	1	1	1	1	1	0	
0	0	1	1	1	0	0	
0	0	0	0	0	0	0	



	3	5	6	5	3
4	5	8	8	6	3
$=\frac{1}{0}$	6	9	8	7	4
9	5	8	8	6	3
	3	5	6	5	3

Input image

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

-1 -1 2 2 -1 -1

*

-1

2

-1

=

0	1	3	1	0
1	1	1	З	З
0	0	-2	-4	-4
1	1	1	З	З
0	1	3	1	0

Input image

Very commonly used for:

Very commonly used for:

• Blurring an image

Very commonly used for:

• Blurring an image

	1/9	1/9	1/9	
*	1/9	1/9	1/9	
	1/9	1/9	1/9	

=

Very commonly used for:

• Blurring an image

	1/9	1/9	1/9	
*	1/9	1/9	1/9	
	1/9	1/9	1/9	

=

• Finding edges

Very commonly used for:

• Blurring an image

	1/9	1/9	1/9	
*	1/9	1/9	1/9	
	1/9	1/9	1/9	

• Finding edges

	-1	-1	-1	
*	2	2	2	=
	-1	-1	-1	

(this example finds horizontal edges)

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

-1	-1	-1
2	2	2
-1	-1	-1

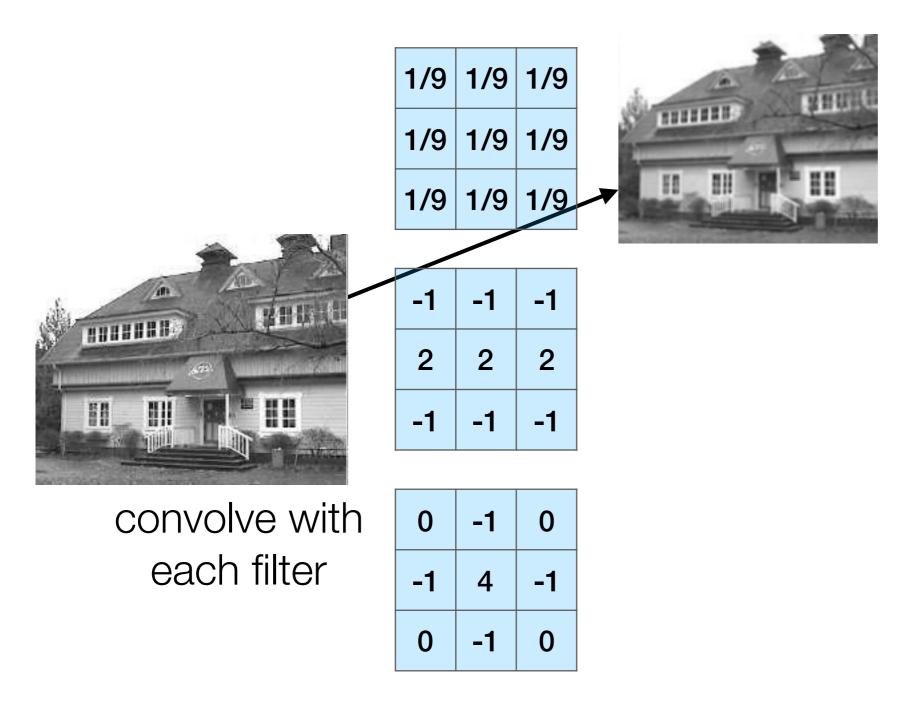
0	-1	0
-1	4	-1
0	-1	0

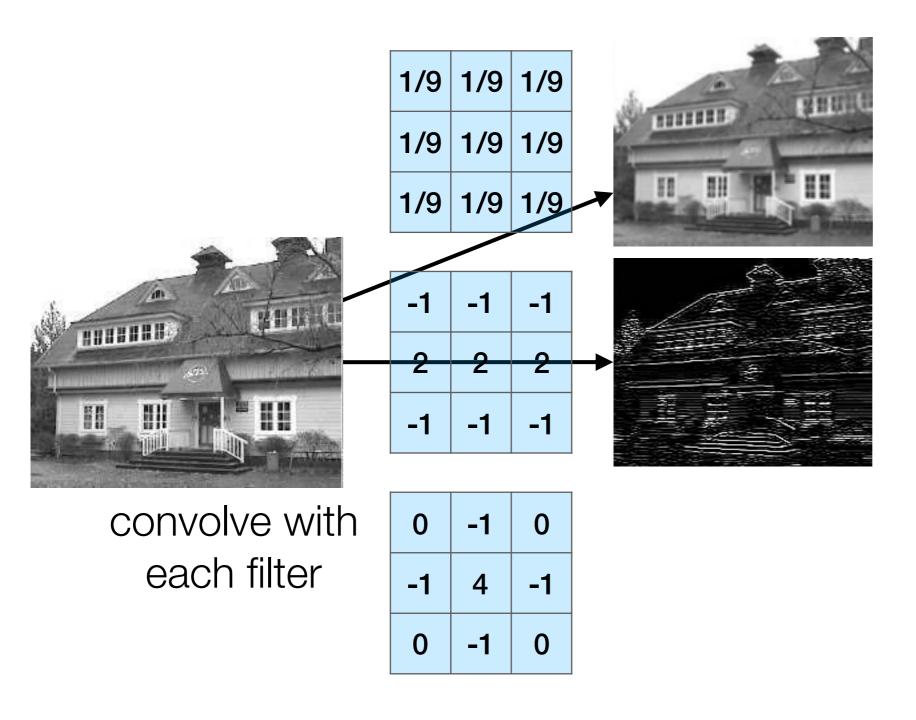
1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

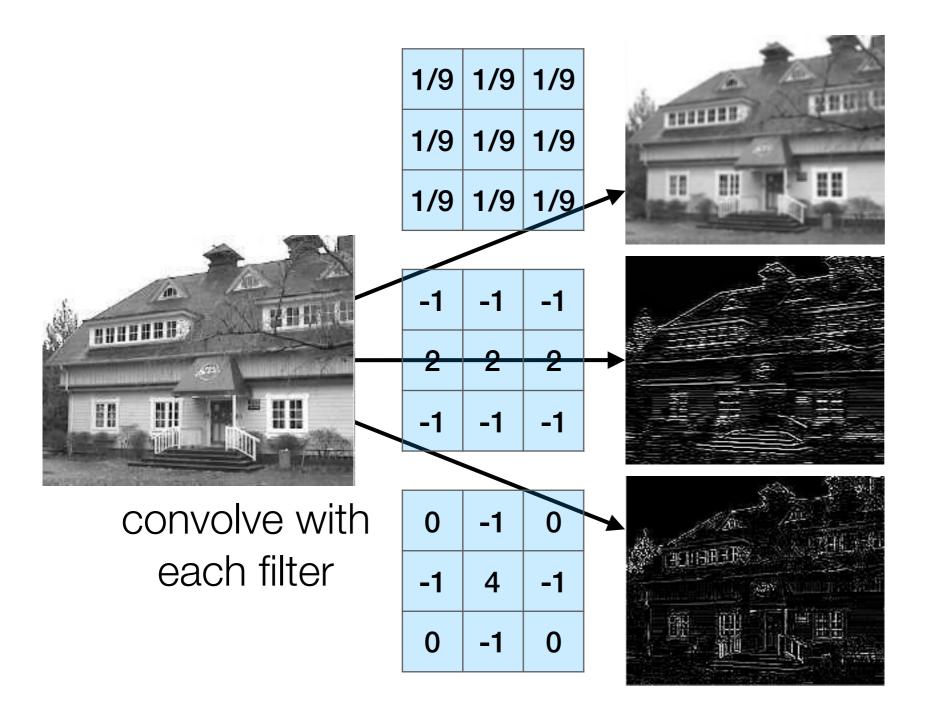
convolve with each filter

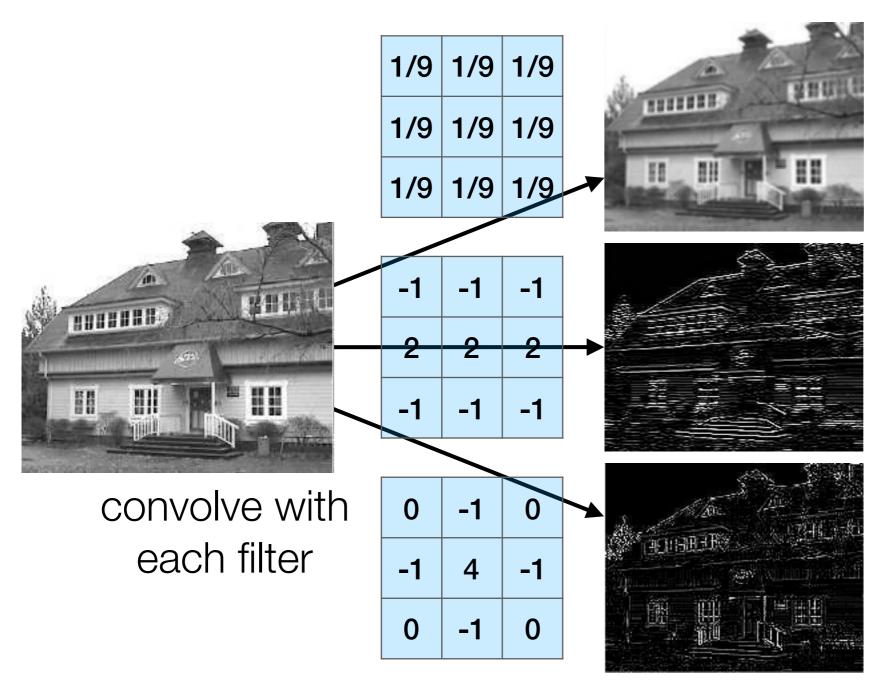
-1	-1	-1
2	2	2
-1	-1	-1

0	-1	0
-1	4	-1
0	-1	0

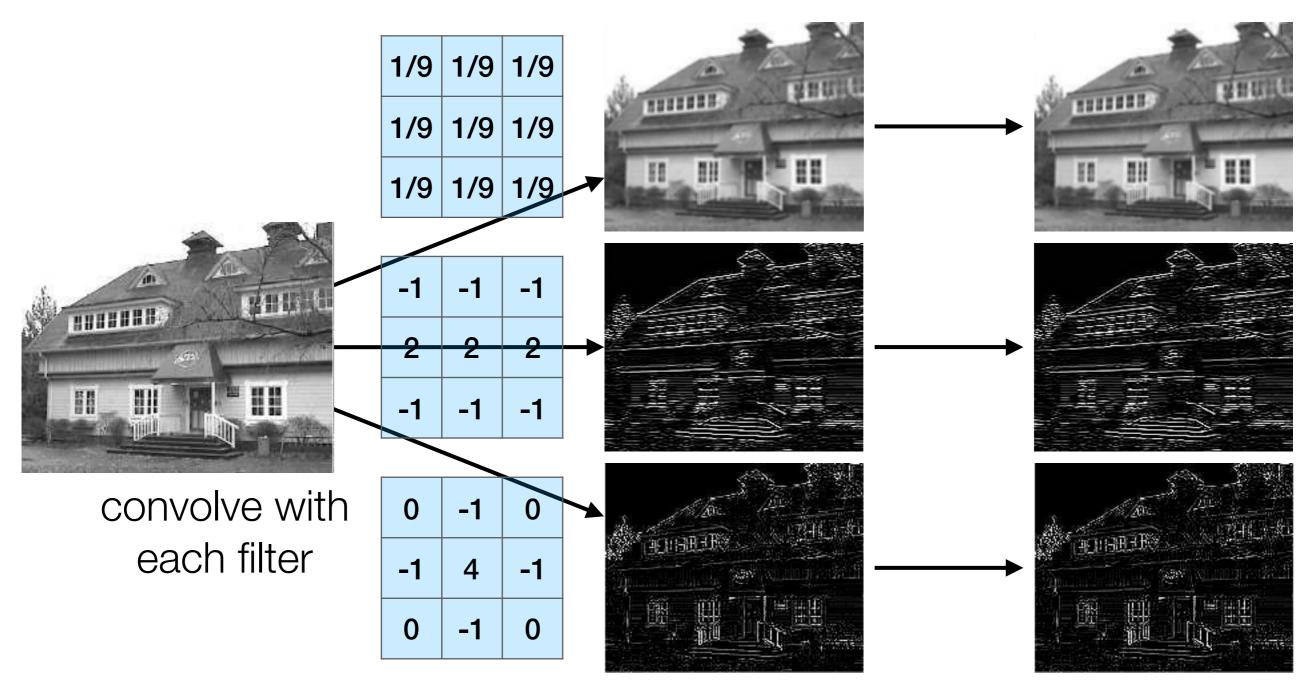




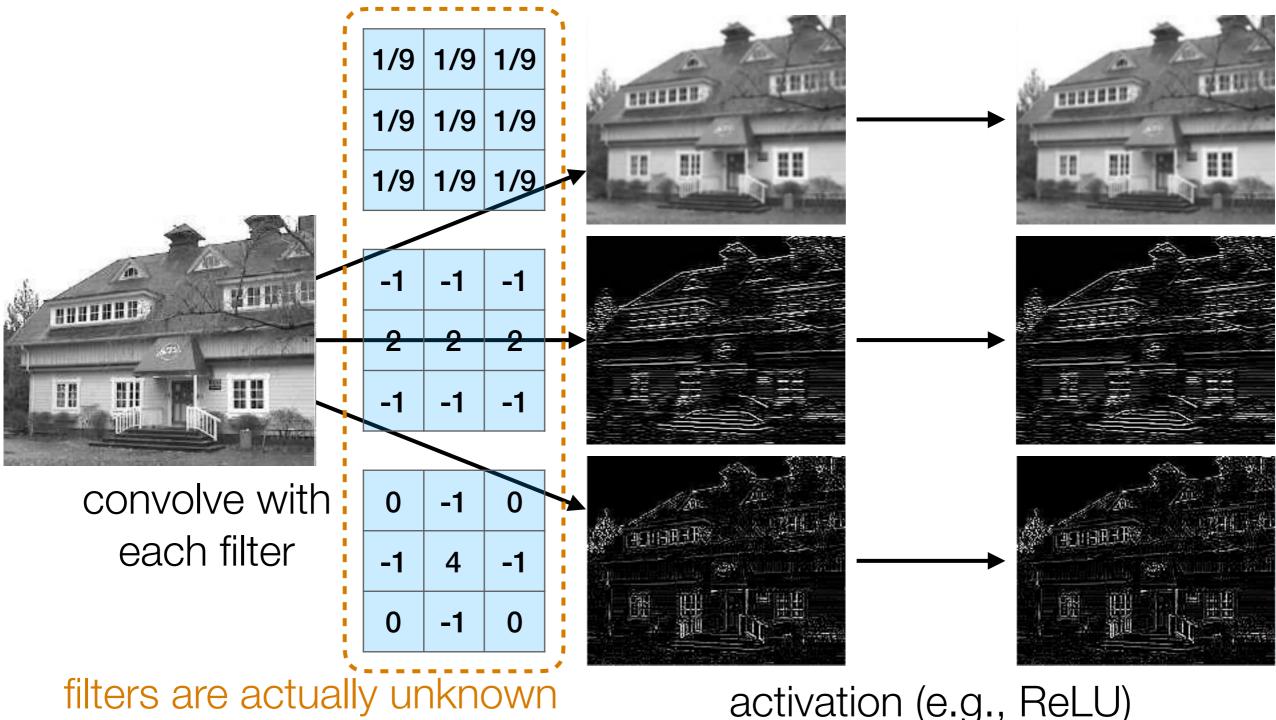




activation (e.g., ReLU)

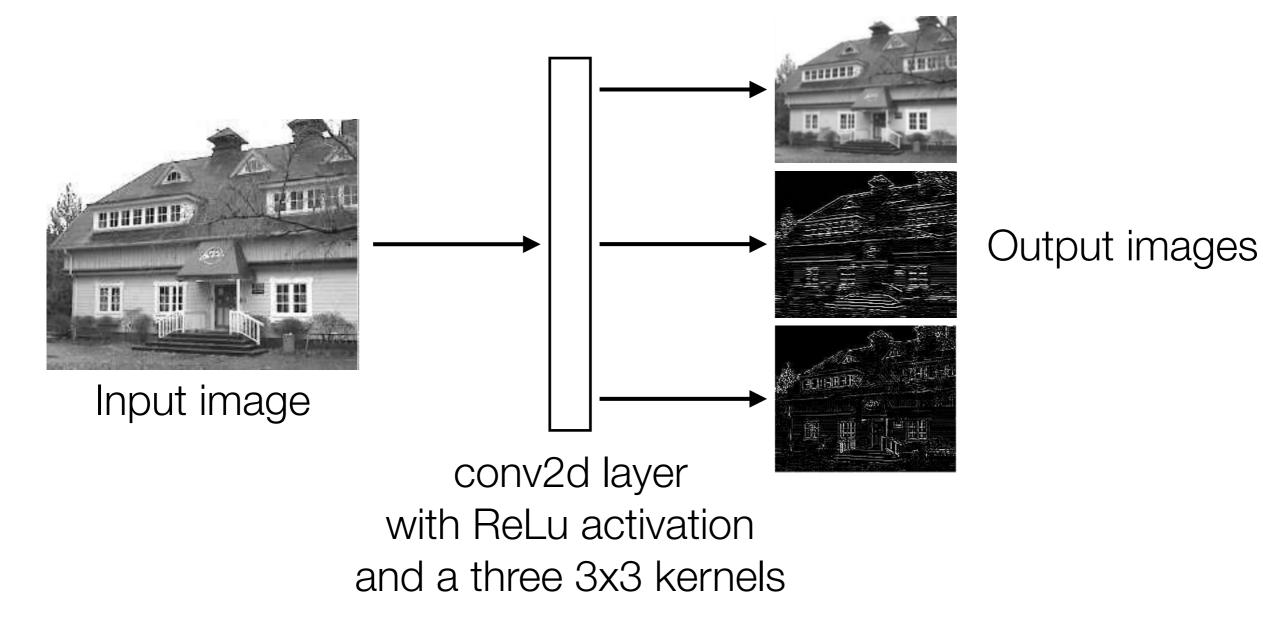


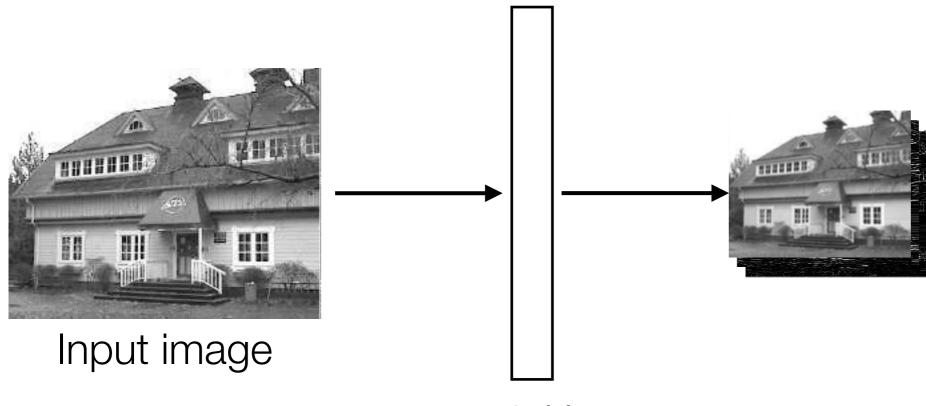
activation (e.g., ReLU)



and are learned!

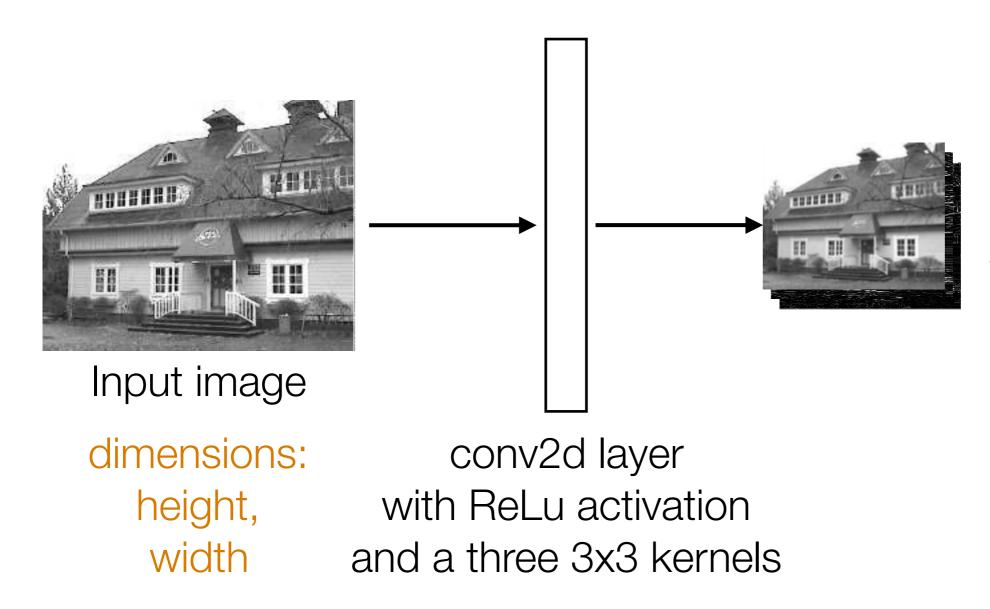
activation (e.g., ReLU)



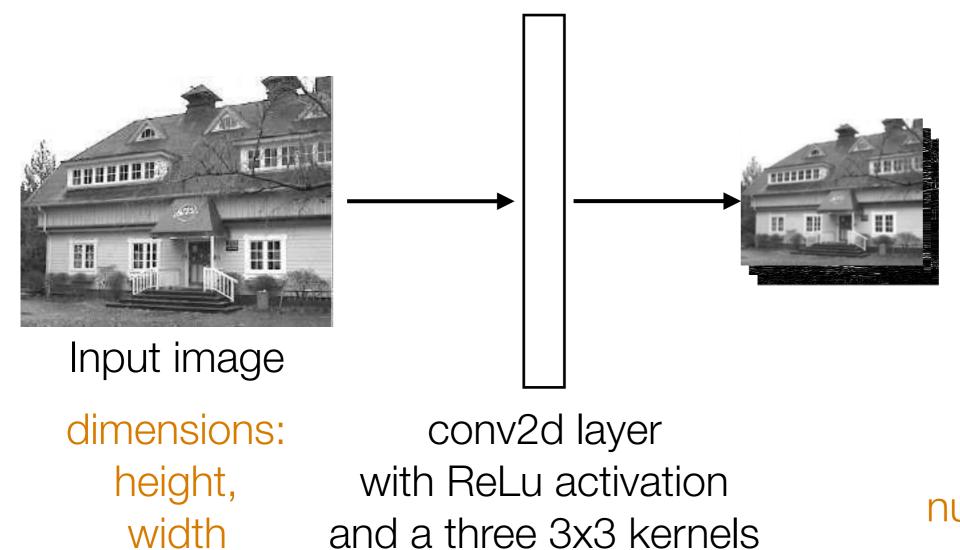


Stack output images into a single "output feature map"

conv2d layer with ReLu activation and a three 3x3 kernels

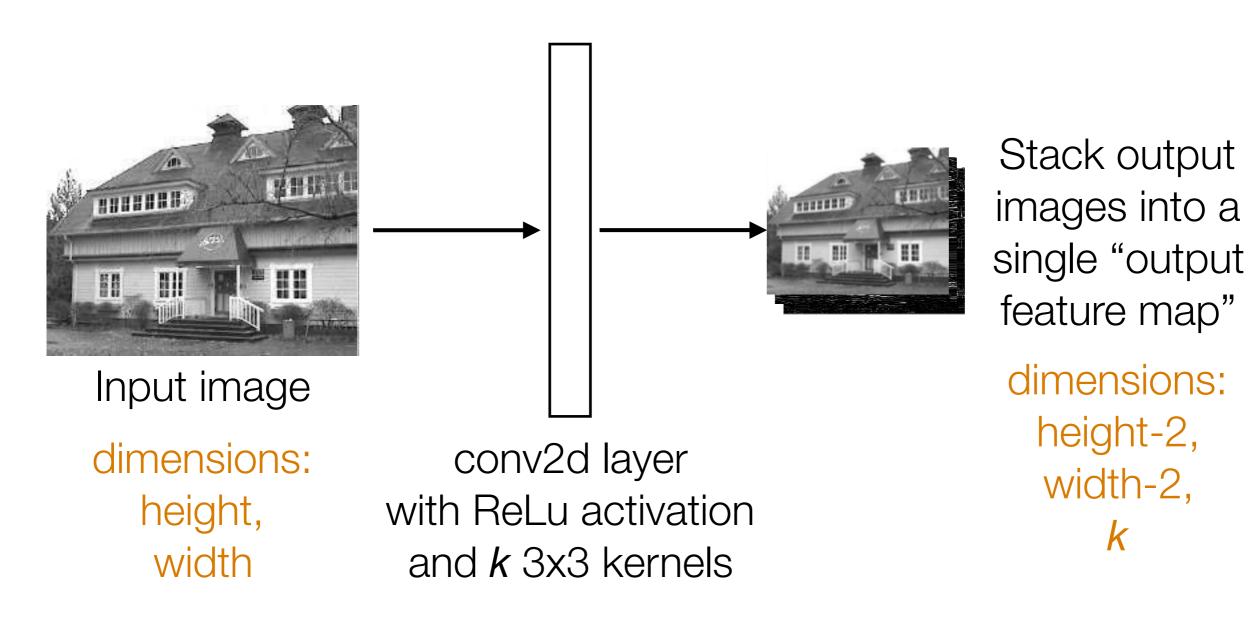


Stack output images into a single "output feature map"



Stack output images into a single "output feature map"

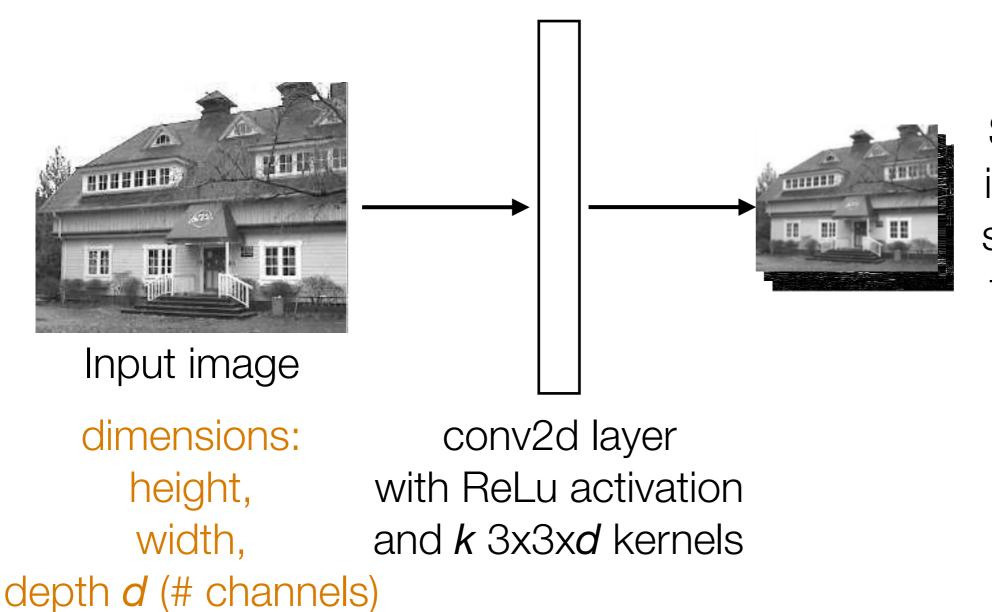
dimensions: height-2, width-2, number of kernels (3 in this case)



Images from: http://aishack.in/tutorials/image-convolution-examples/

width-2,

k



Stack output images into a single "output feature map"

dimensions: height-2, width-2, *k*



Stack output images into a single "output feature map"

dimensions: height-2, width-2, k

Pooling

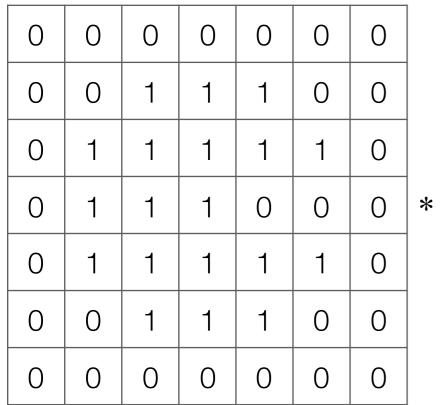
Pooling

• Aggregate local information

Pooling

• Aggregate local information

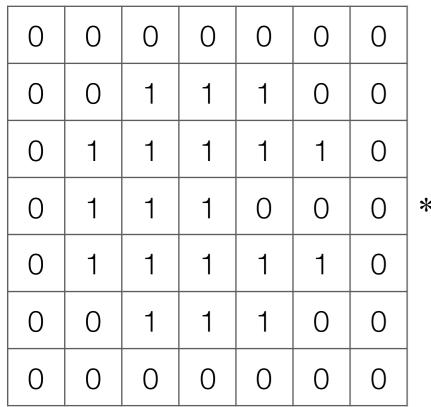
 Produces a smaller image (each resulting pixel captures some "global" information)



	-1	-1	-1	
<	2	2	2	=
	-1	-1	-1	

	0	1	3	1	0
	1	1	1	З	3
=	0	0	-2	-4	-4
	1	1	1	З	3
	0	1	3	1	0

Input image



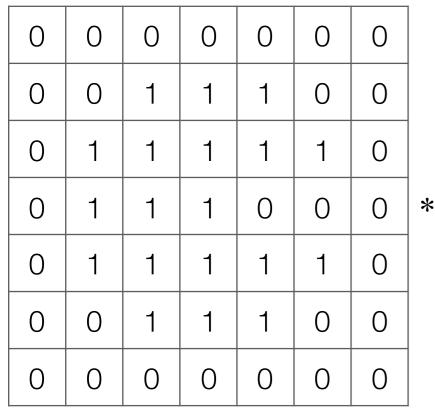
	-1	-1	-1	
*	2	2	2	=
	-1	-1	-1	

	0	1	3	1	0
	1	1	1	3	3
•	0	0	-2	-4	-4
	1	1	1	3	3
	0	1	3	1	0

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

Input image



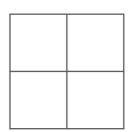
				_
	-1	-1	-1	
k	2	2	2	=
	-1	-1	-1	

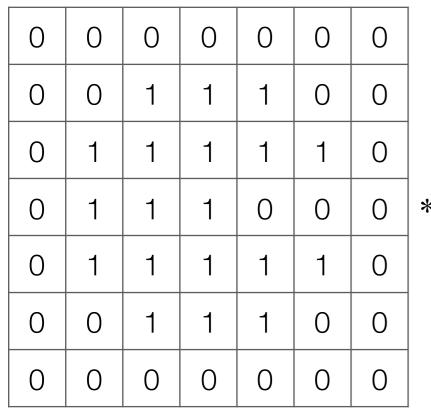
0	1	3	1	0
1	1	1	3	3
0	0	-2	-4	-4
1	1	1	3	3
0	1	3	1	0

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	З	1	0

Output image after ReLU

Input image





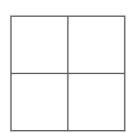
	-1	-1	-1	
*	2	2	2	=
	-1	-1	-1	

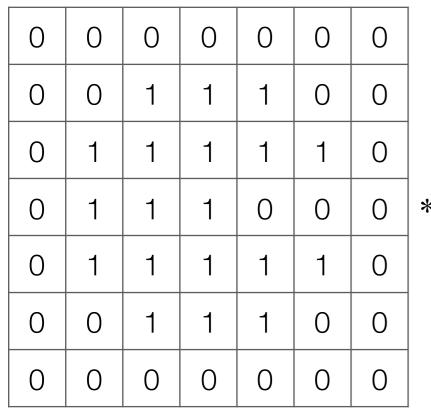
	0	1	3	1	0
	1	1	1	3	3
•	0	0	-2	-4	-4
	1	1	1	3	3
	0	-	3	1	0
	U		5	I	

0	1	3	1	0
1	1	1	3	З
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

Input image





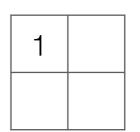
				_
	-1	-1	-1	
*	2	2	2	=
	-1	-1	-1	

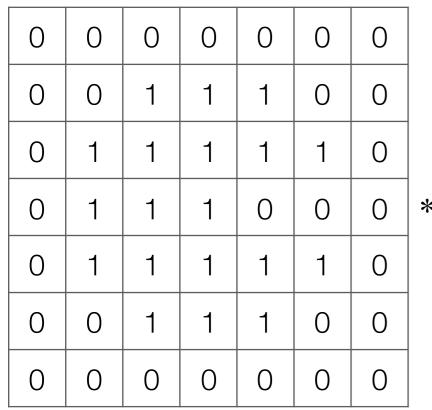
	0	1	3	1	0
		-	0	-	0
	1	1	1	3	3
	0	0	-2	-4	-4
	1	1	1	З	3
	0	1	3	1	0

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	З	1	0

Output image after ReLU

Input image





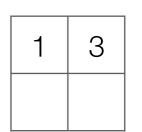
				_
	-1	-1	-1	
k	2	2	2	=
	-1	-1	-1	

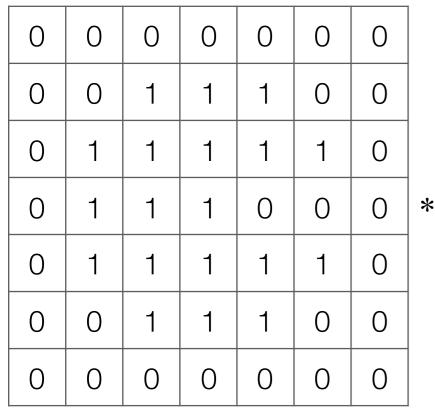
0	1	З	1	0
1	1	1	3	3
0	0	-2	-4	-4
1	1	1	3	3
0	1	3	1	0

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

Input image





				_
	-1	-1	-1	
k	2	2	2	=
	-1	-1	-1	

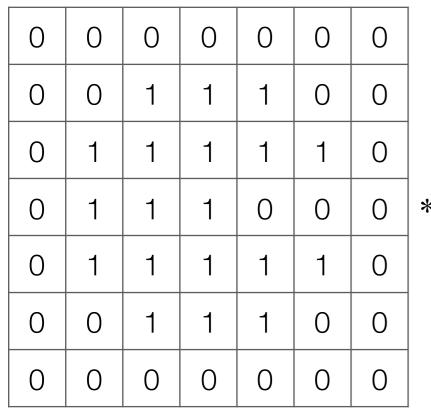
0	1	3	1	0
1	1	1	3	3
0	0	-2	-4	-4
1	1	1	3	3
0	1	3	1	0

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	З	1	0

Output image after ReLU

Input image

1 3 1



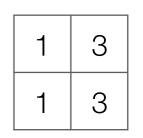
	-1	-1	-1	
*	2	2	2	=
	-1	-1	-1	

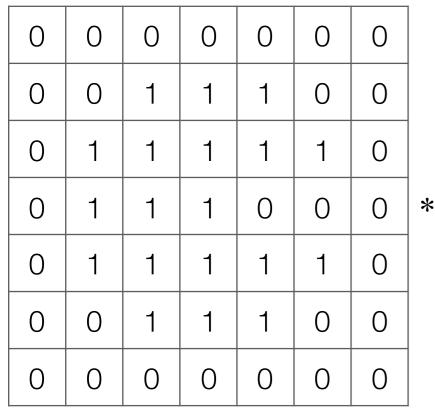
	0	1	3	1	0
	1	1	1	3	3
	0	0	-2	-4	-4
	1	1	1	3	3
	0	1	3	1	0

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

Input image





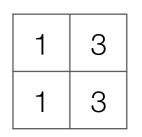
				_
	-1	-1	-1	
k	2	2	2	=
	-1	-1	-1	

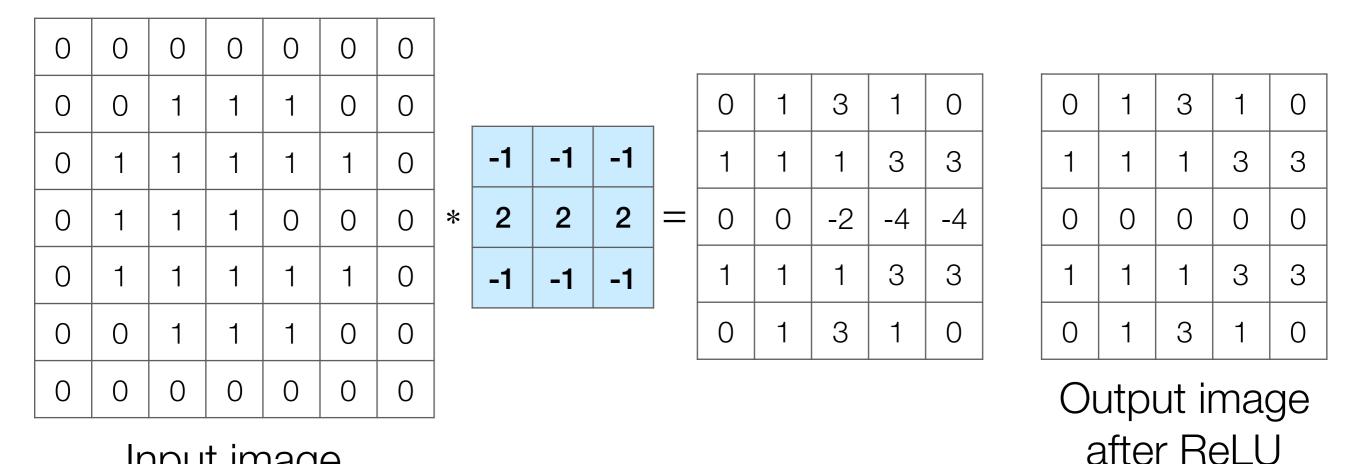
0	1	3	1	0
1	1	1	3	3
0	0	-2	-4	-4
1	1	1	3	3
0	1	3	1	0

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	З
0	1	3	1	0

Output image after ReLU

Input image

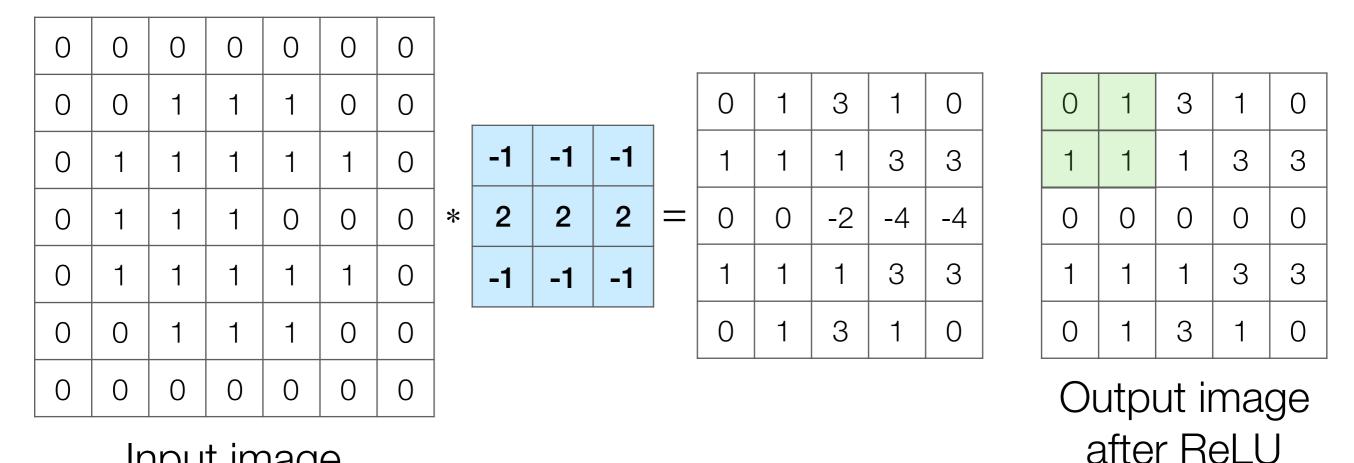




Input image

What numbers were involved in computing this 1? -

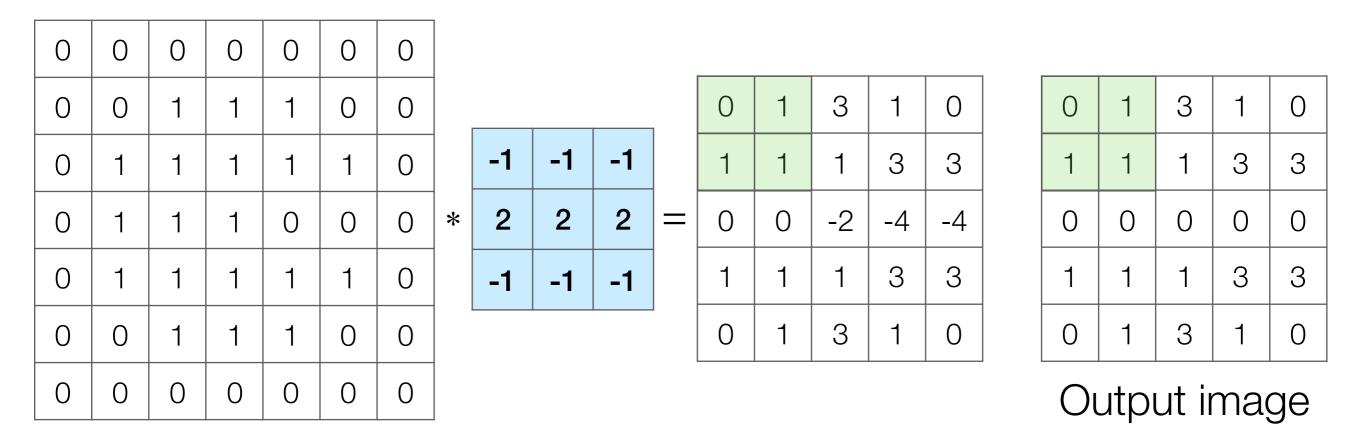
3 1 З 1



Input image

What numbers were involved in computing this 1? -

3 1 З 1

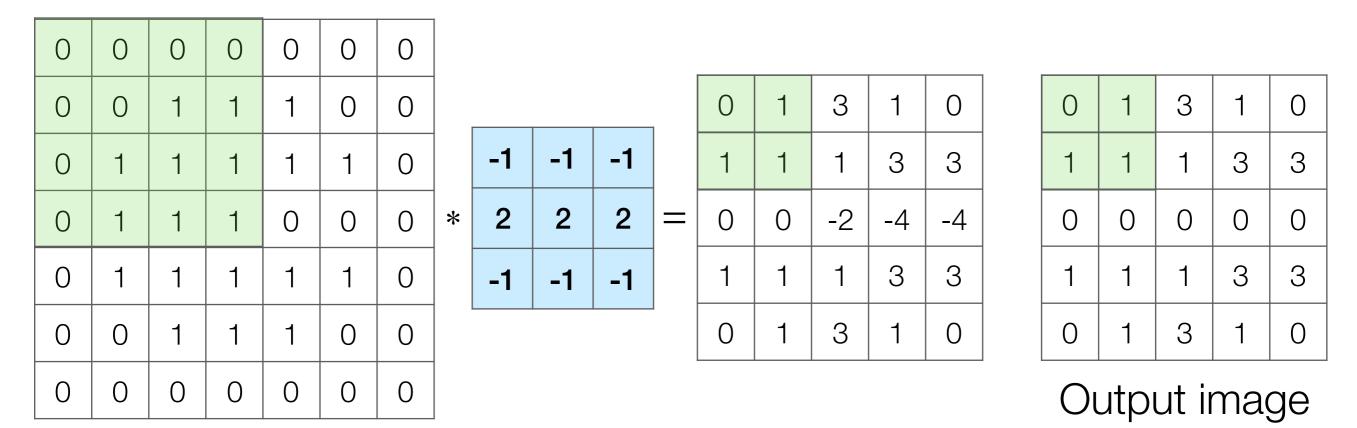


Input image

What numbers were involved in computing this 1? -

1 3 1 3

after ReLU

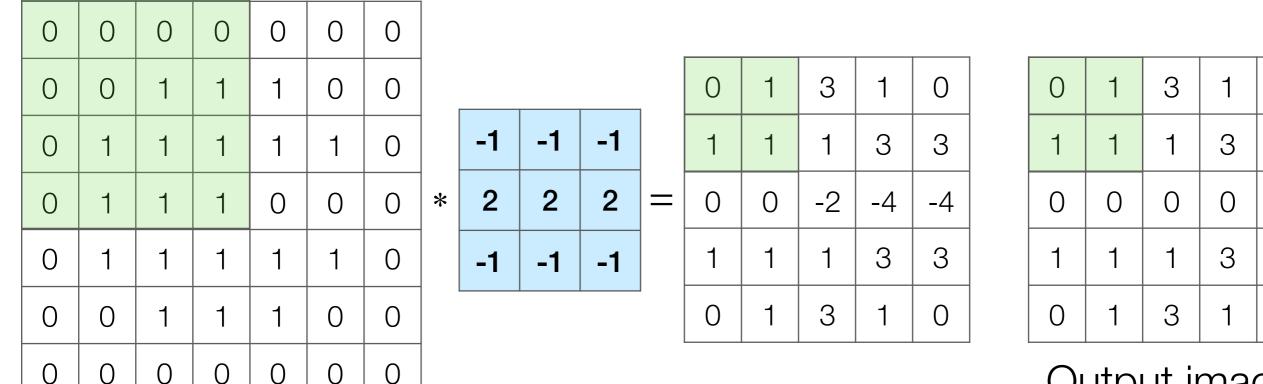


Input image

What numbers were involved in computing this 1? -

1 3 1 3

after ReLU



Output image after ReLU

0

3

 $\left(\right)$

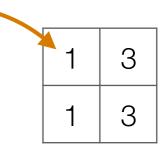
3

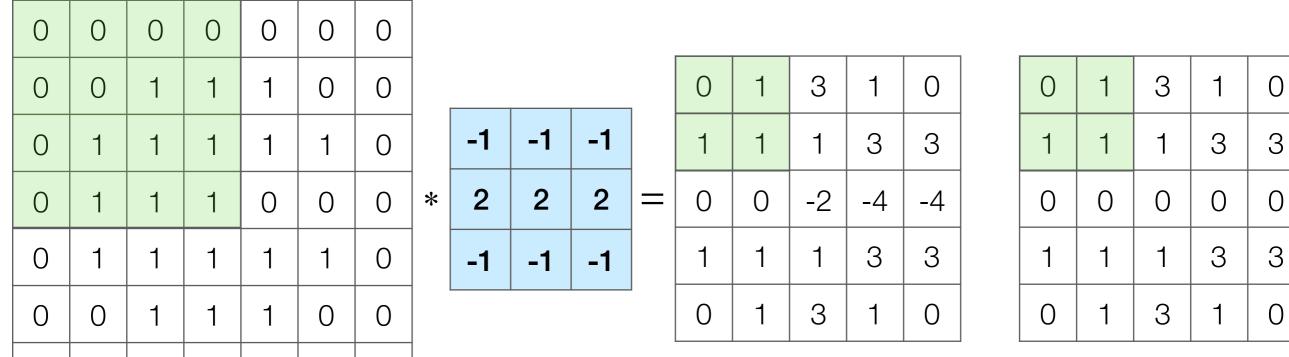
0

Input image

What numbers were involved in computing this 1? -

In this example: 1 pixel in max pooling output captures information from 16 input pixels!





Output image after ReLU

Input image

0

0

 $\left(\right)$

0

0

()

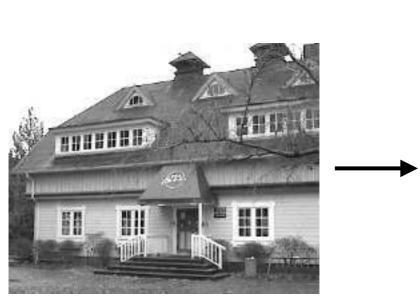
0

What numbers were involved in computing this 1? -

In this example: 1 pixel in max pooling output captures information from 16 input pixels!

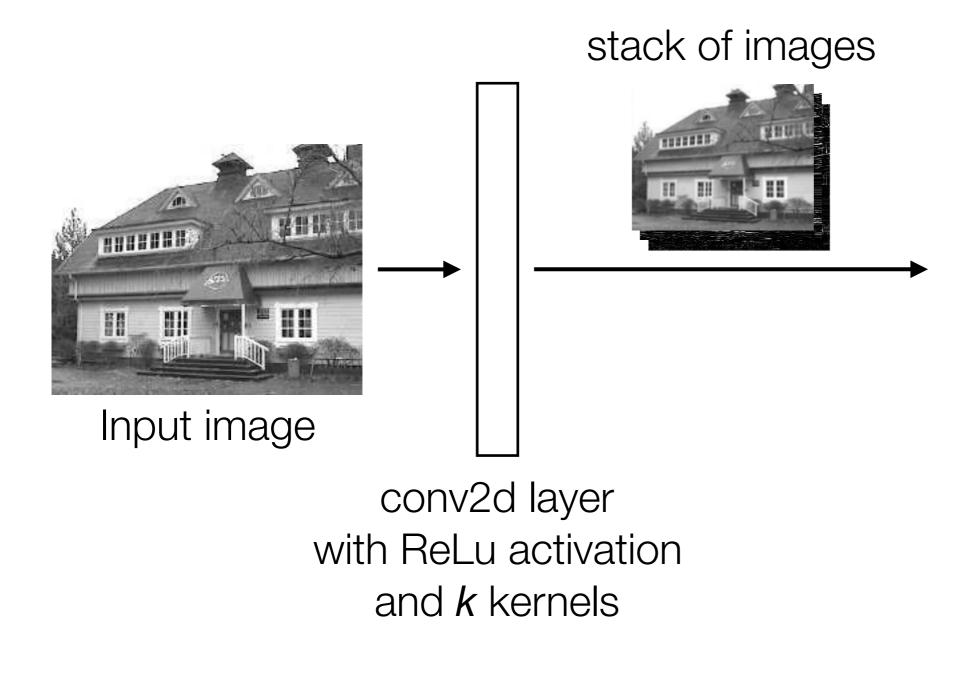
Example: applying max pooling again results in a single pixel that captures info from entire input image!

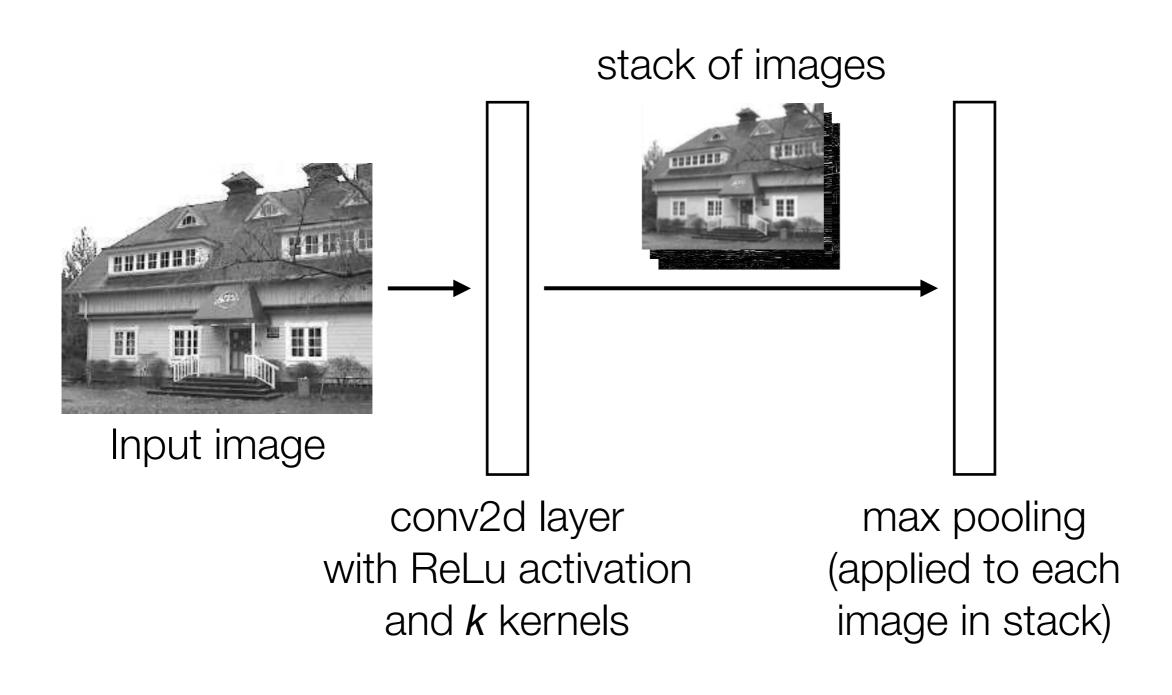
1 3 1 3

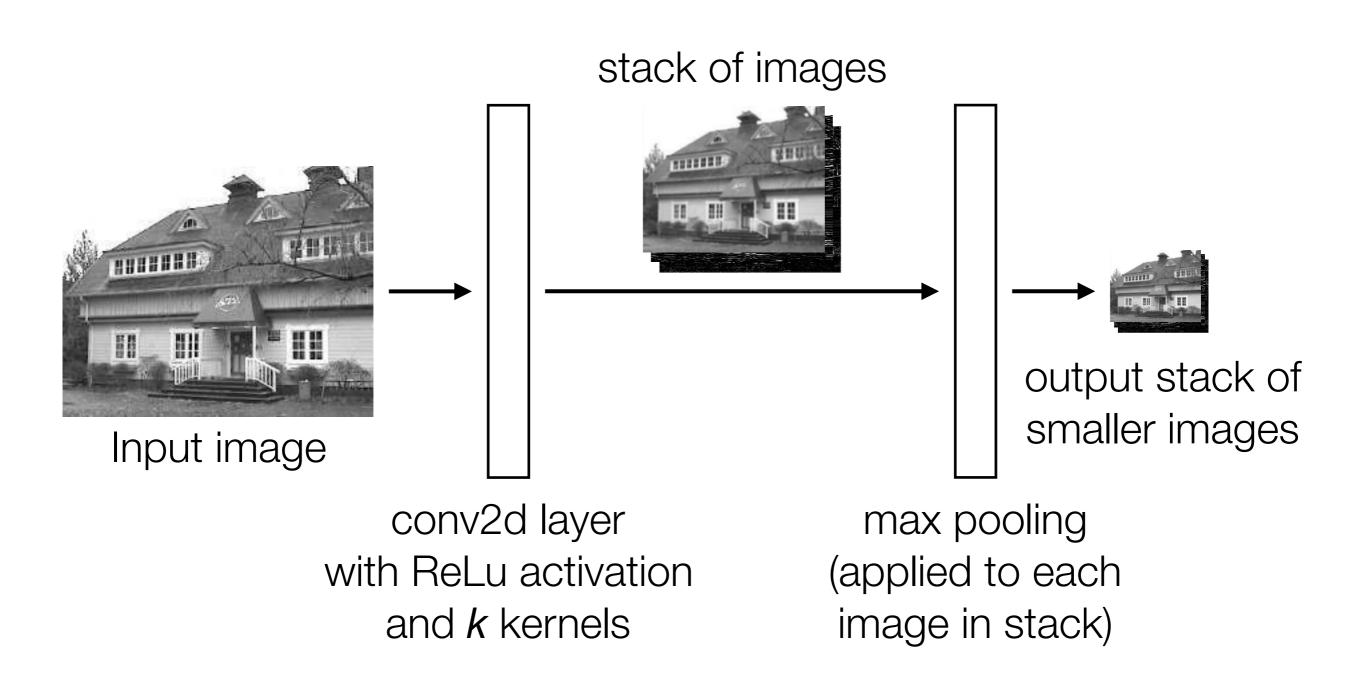


Input image

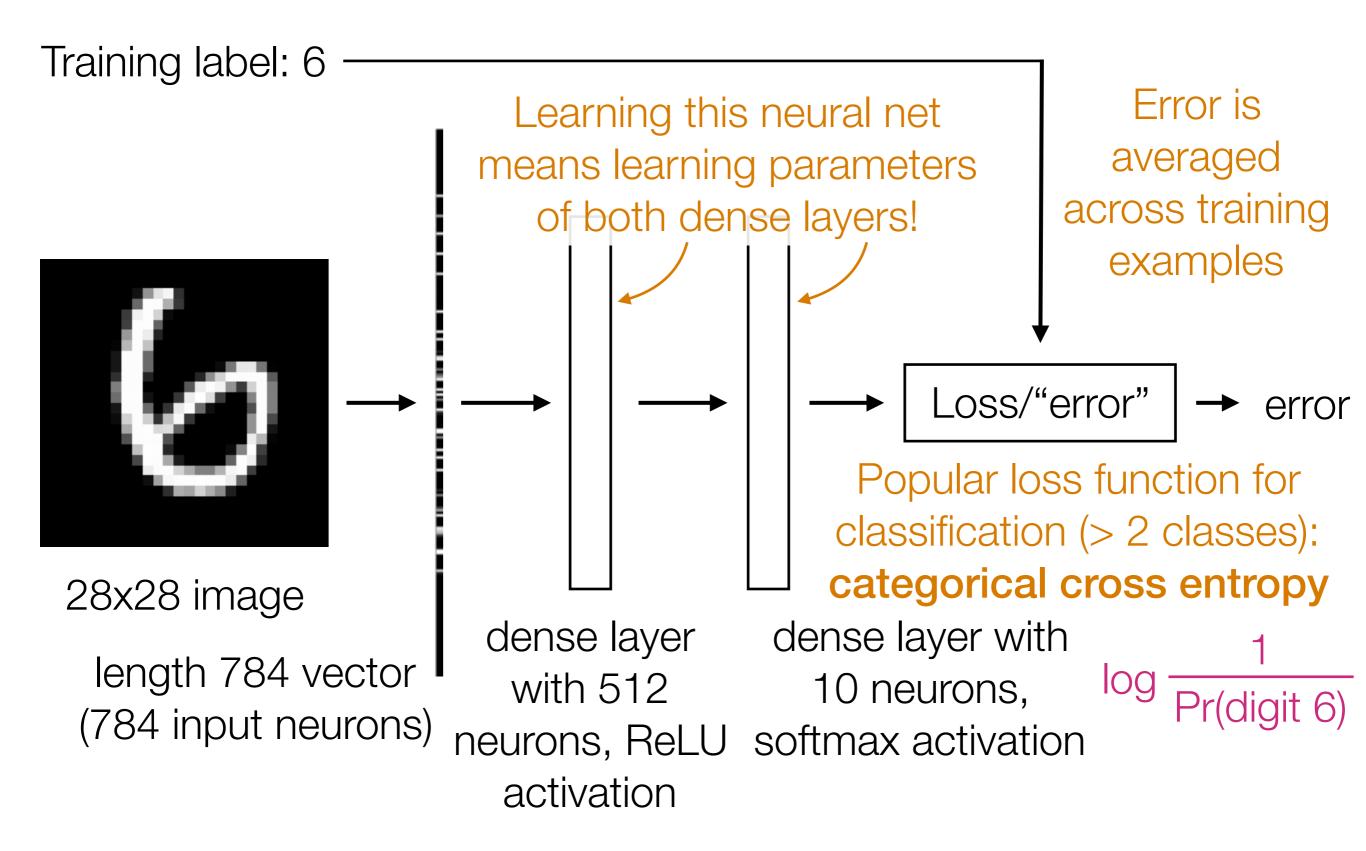
conv2d layer with ReLu activation and *k* kernels

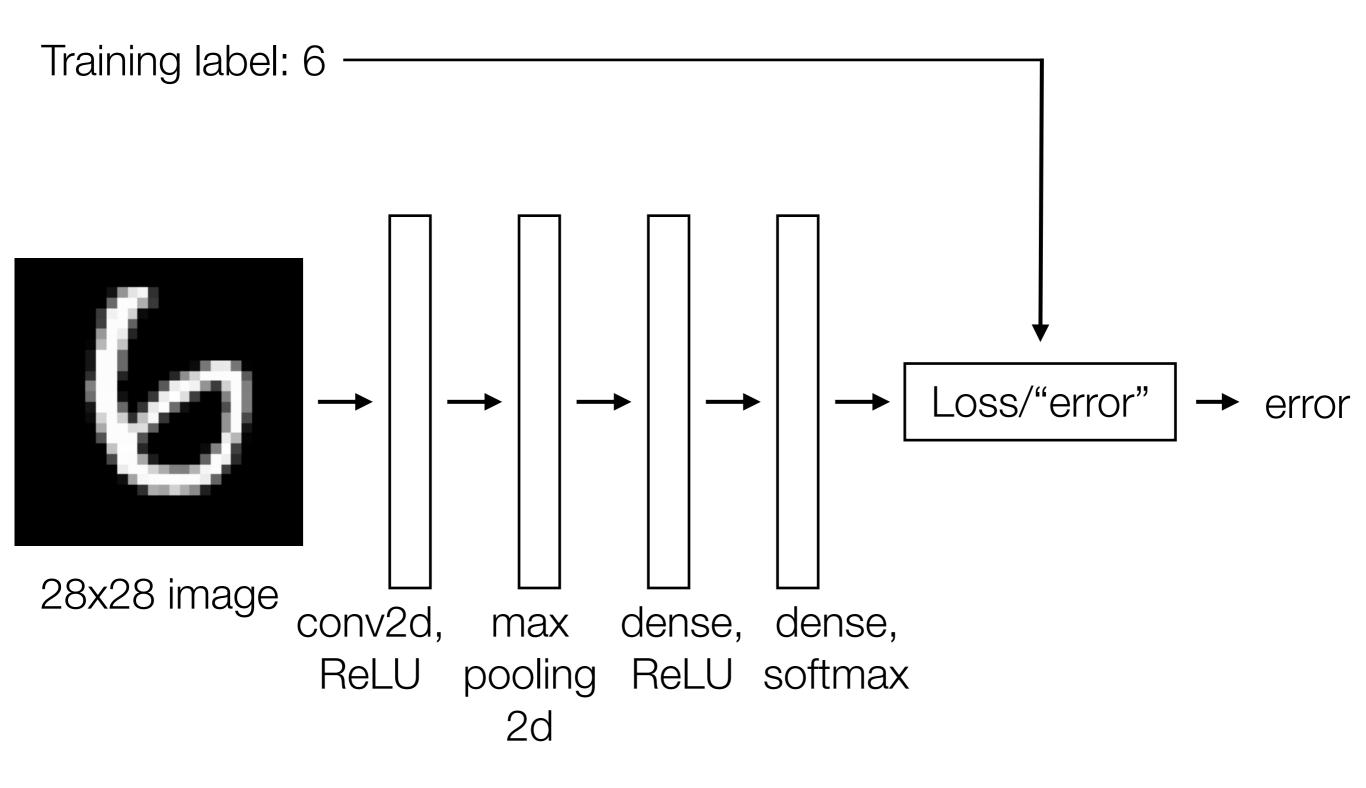




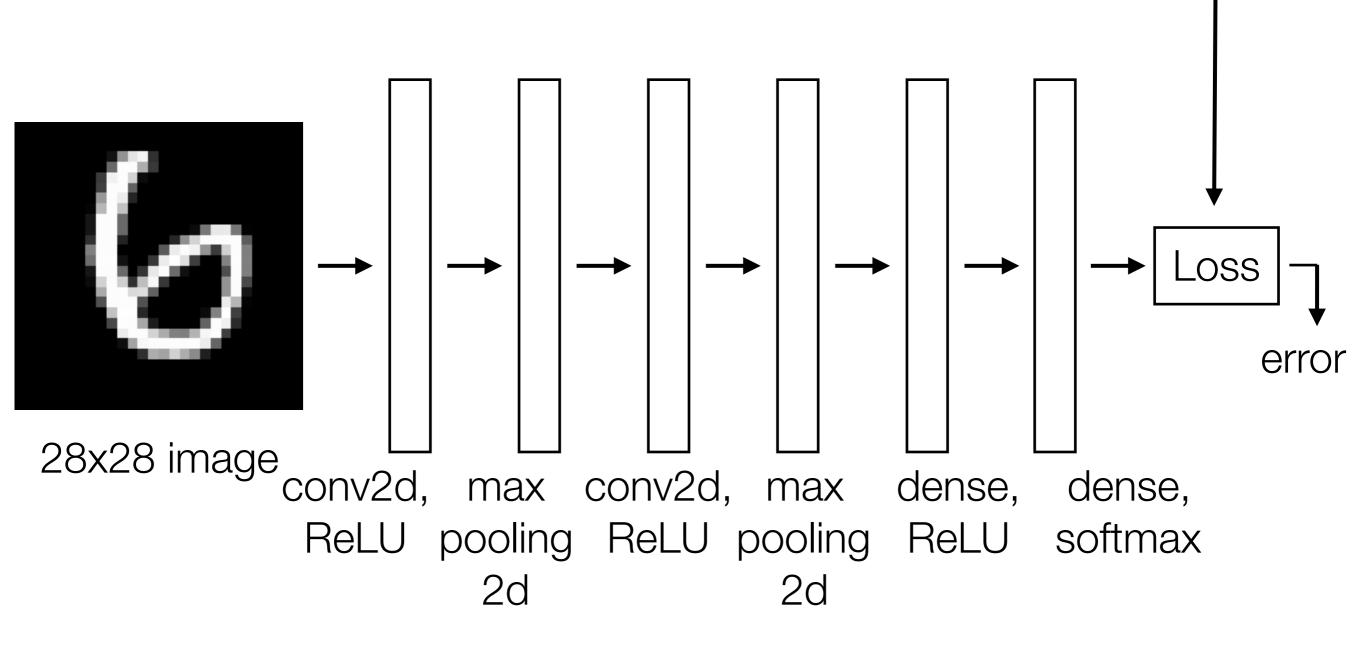


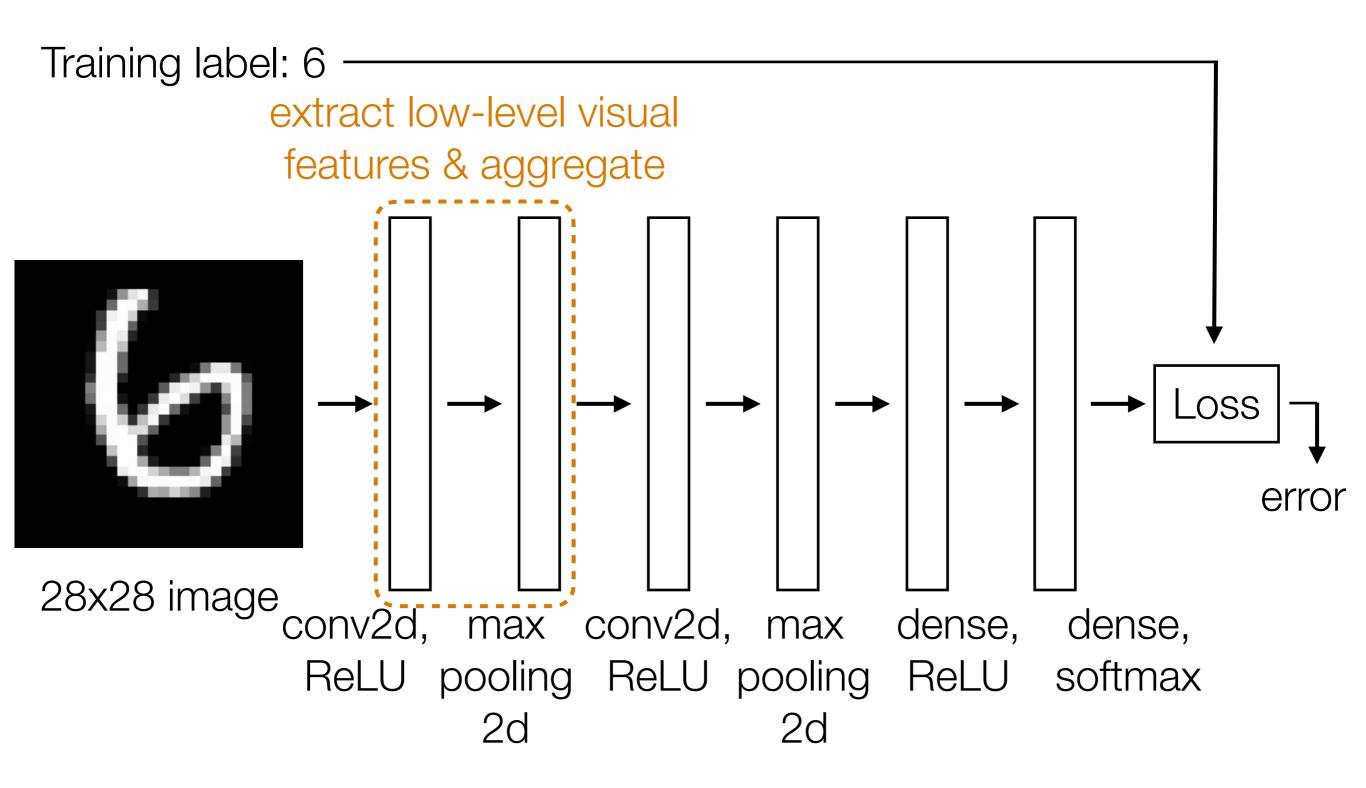
Handwritten Digit Recognition

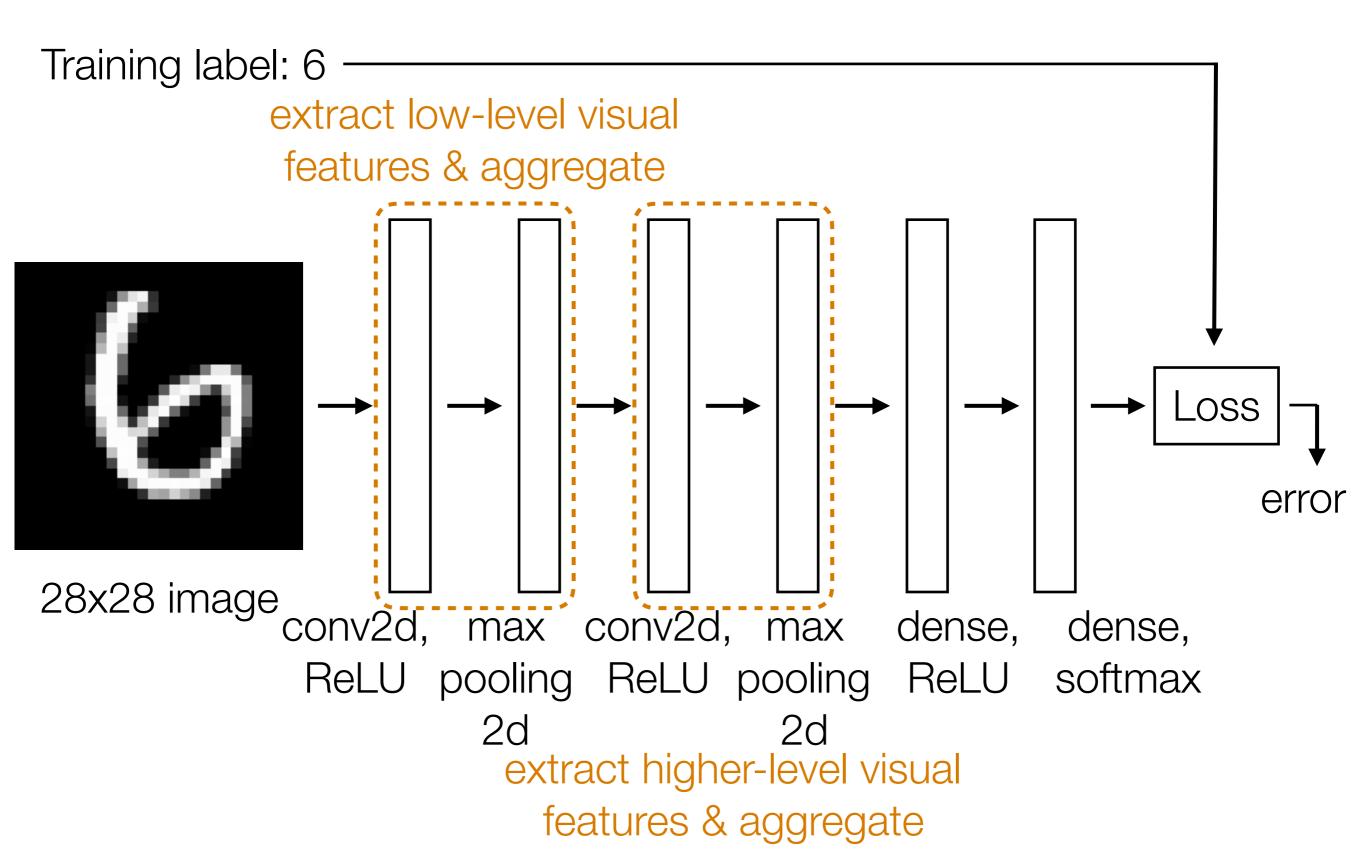


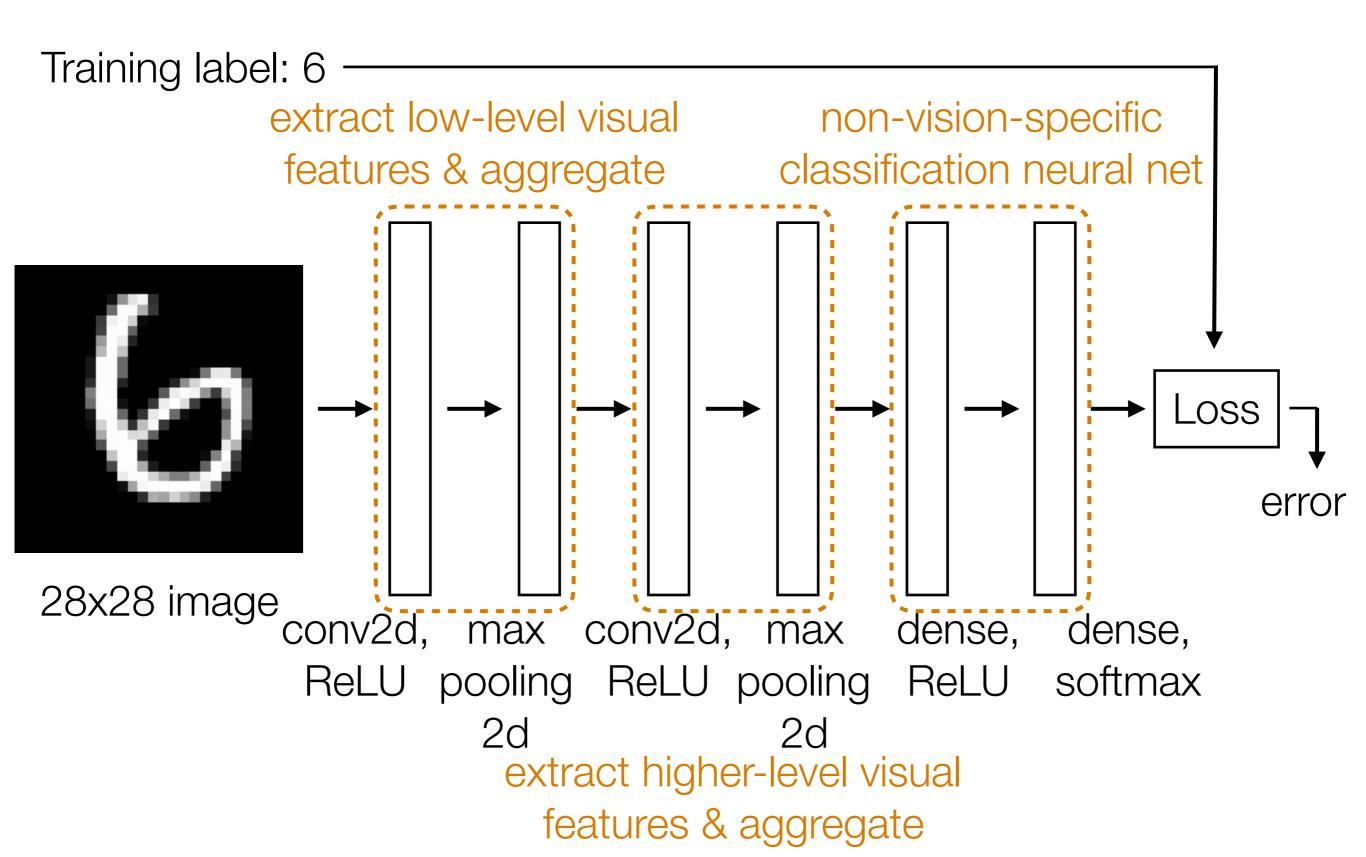


Training label: 6









CNN Demo

• Learn convolution filters for extracting simple features

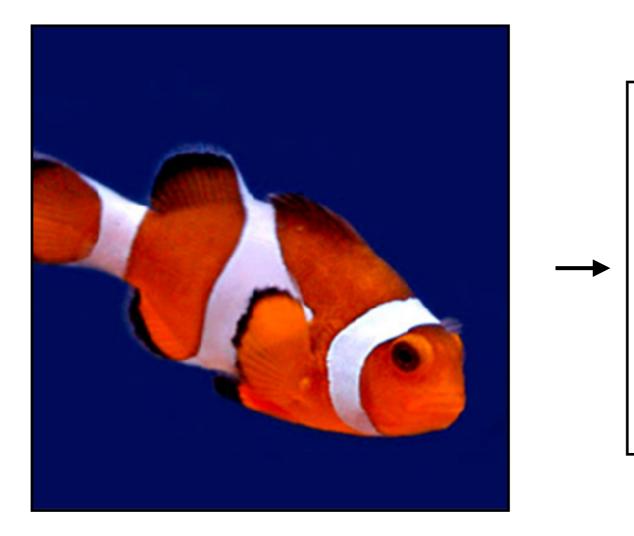
- Learn convolution filters for extracting simple features
- Max pooling aggregates local information

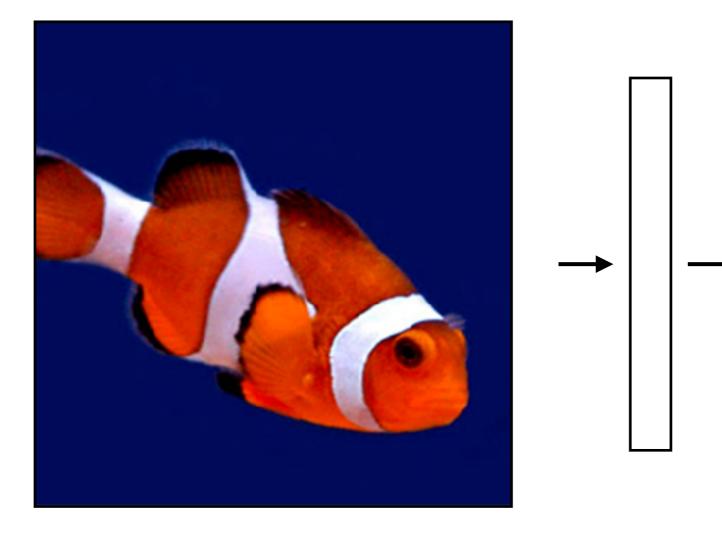
- Learn convolution filters for extracting simple features
- Max pooling aggregates local information
- Can then repeat the above two layers to learn features from increasingly higher-level representations

- Learn convolution filters for extracting simple features
- Max pooling aggregates local information
- Can then repeat the above two layers to learn features from increasingly higher-level representations
- Convolution filters are shift-invariant

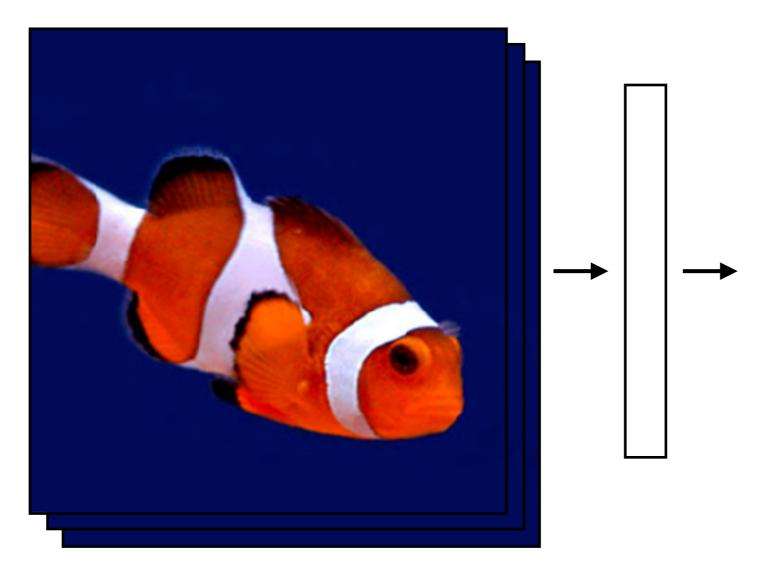
- Learn convolution filters for extracting simple features
- Max pooling aggregates local information
- Can then repeat the above two layers to learn features from increasingly higher-level representations
- Convolution filters are shift-invariant
- In terms of invariance to an object shifting within the input image, this is roughly achieved by pooling

Recurrent Neural Networks (RNNs)



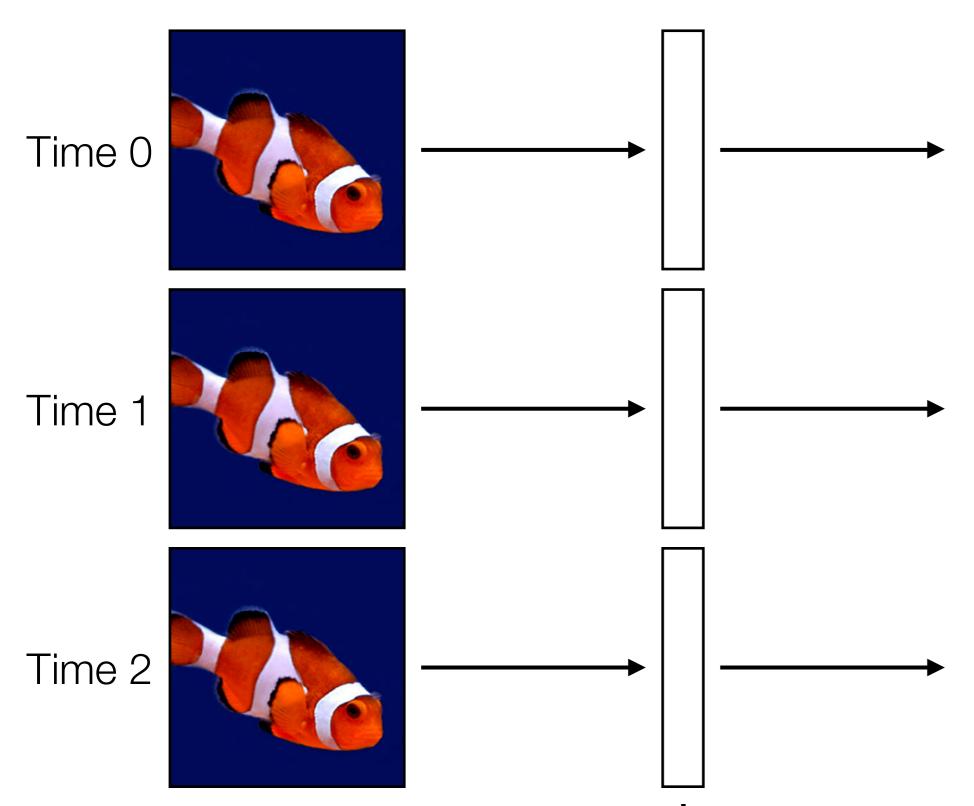


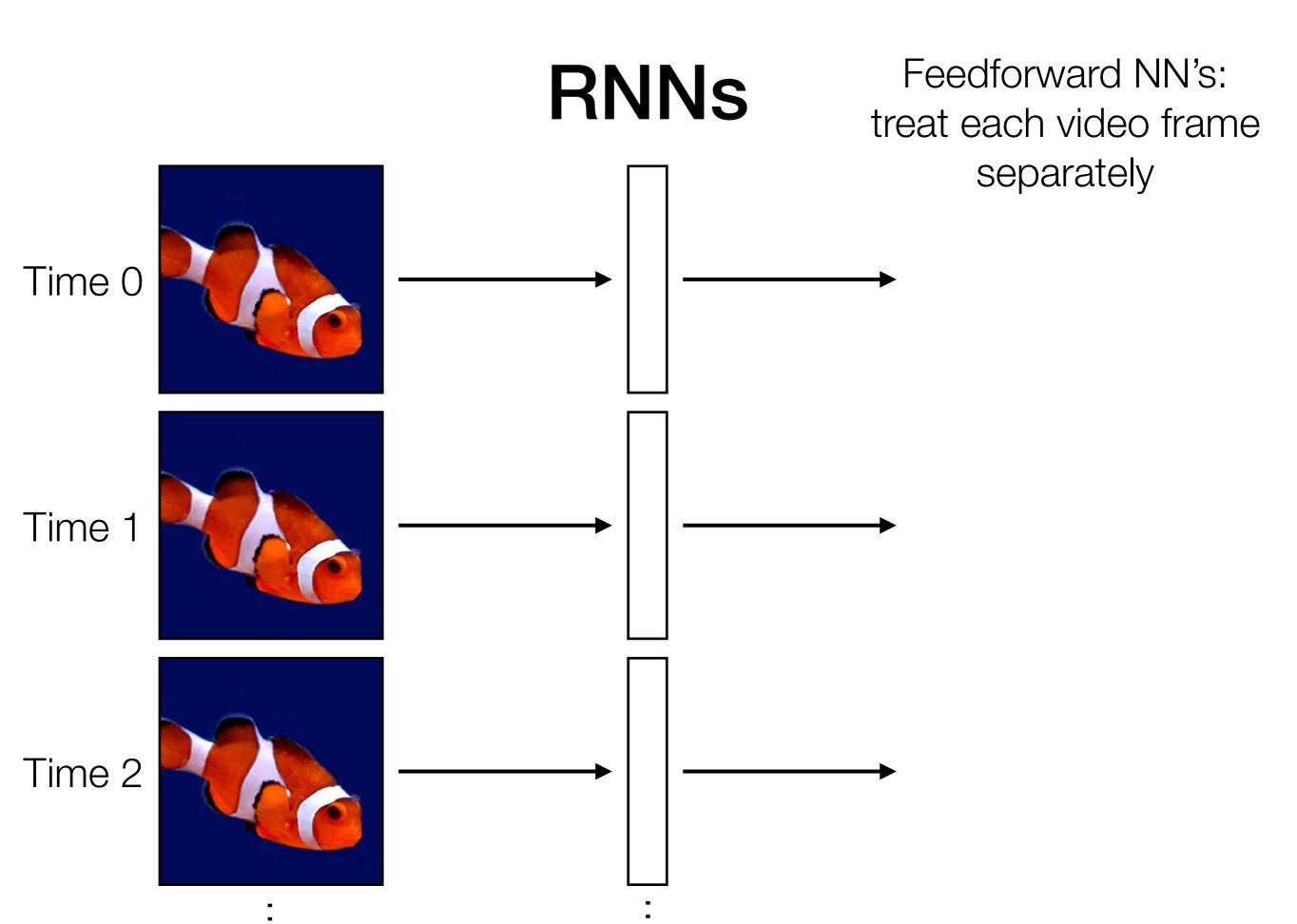
What we've seen so far are "feedforward" NNs

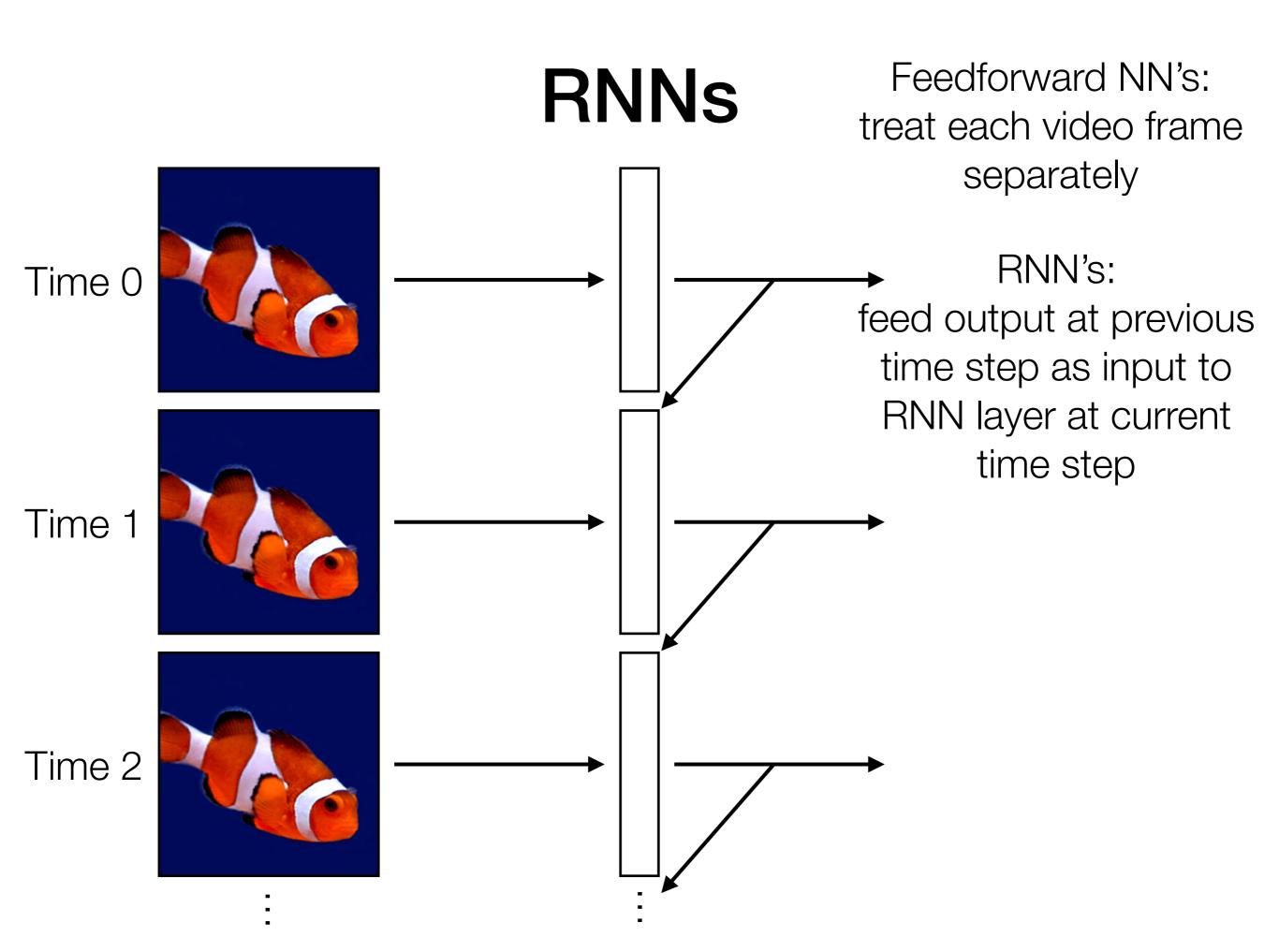


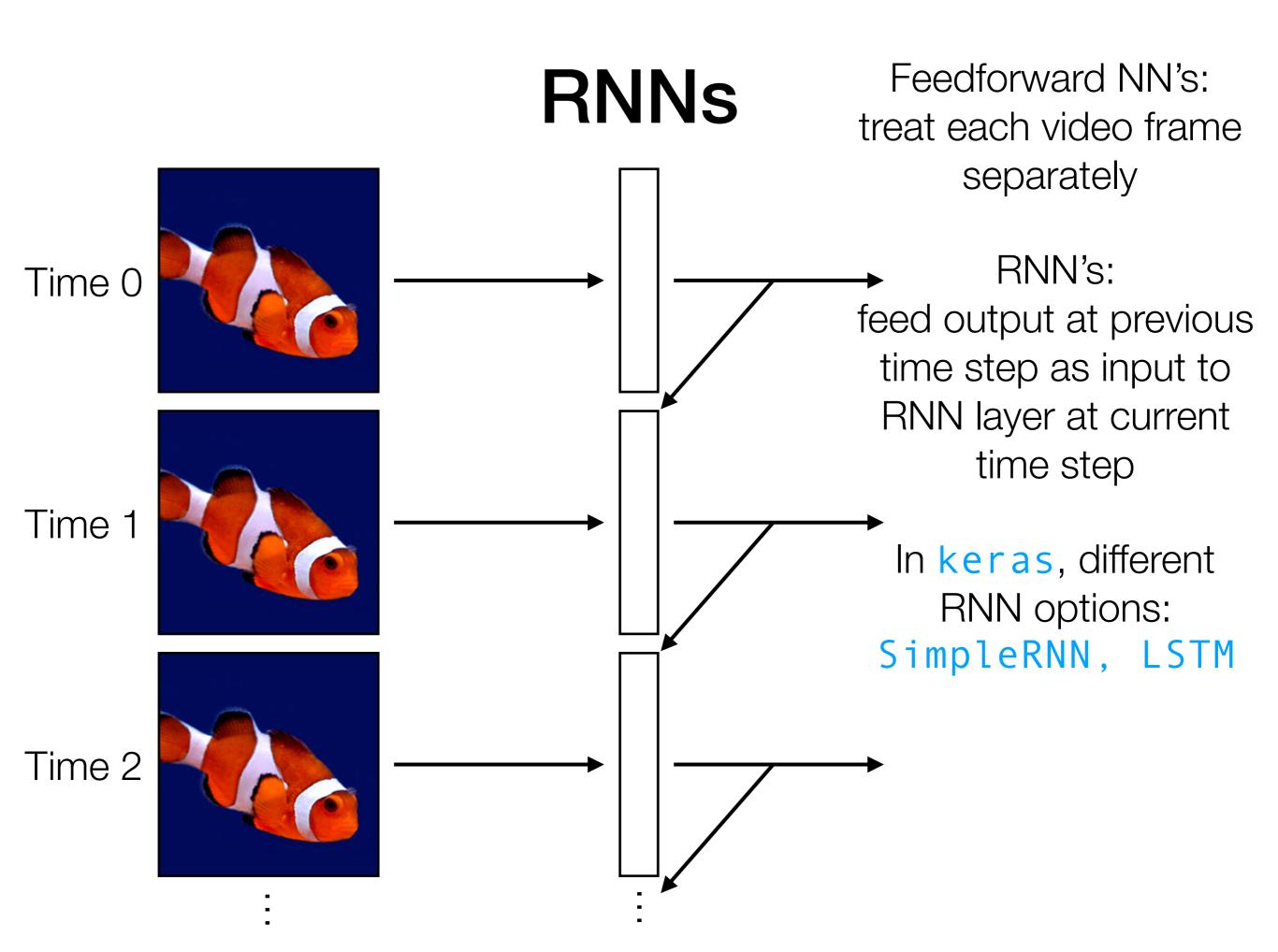
What if we had a video?

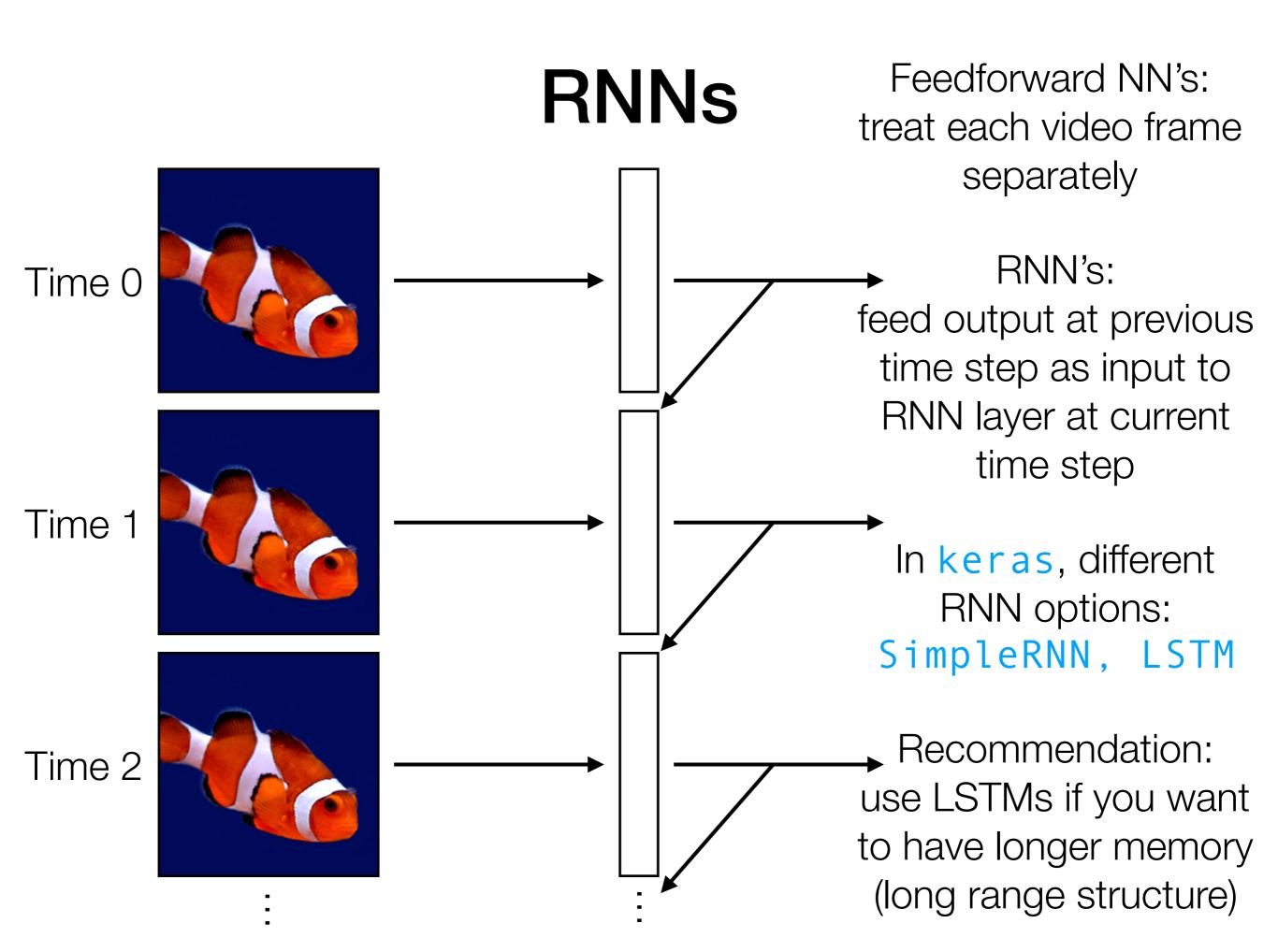
•











Feedforward NN's: treat each video frame separately

RNN's:

feed output at previous time step as input to RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM

Recommendation: use LSTMs if you want to have longer memory (long range structure)

Time series

Feedforward NN's: treat each video frame separately

RNN's:

feed output at previous time step as input to RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM

Recommendation: use LSTMs if you want to have longer memory (long range structure)

Time series

LSTM layer

Feedforward NN's: treat each video frame separately

RNN's:

feed output at previous time step as input to RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM

Recommendation: use LSTMs if you want to have longer memory (long range structure)

Time series

LSTM layer

Feedforward NN's: treat each video frame separately

RNN's:

readily chains together with other neural net layers

feed output at previous time step as input to RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM

Recommendation: use LSTMs if you want to have longer memory (long range structure)

Time series

LSTM layer

Feedforward NN's: treat each video frame separately

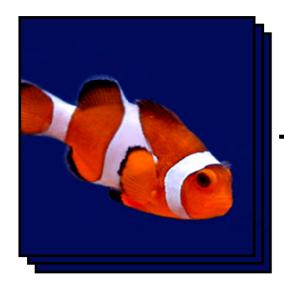
RNN's:

readily chains together with other neural net layers

feed output at previous time step as input to RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM

Recommendation: use LSTMs if you want to have longer memory (long range structure)



Time series

LSTM layer

Feedforward NN's: treat each video frame separately

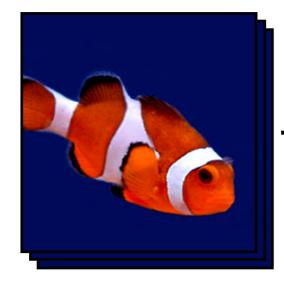
RNN's:

readily chains together with other neural net layers

feed output at previous time step as input to RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM

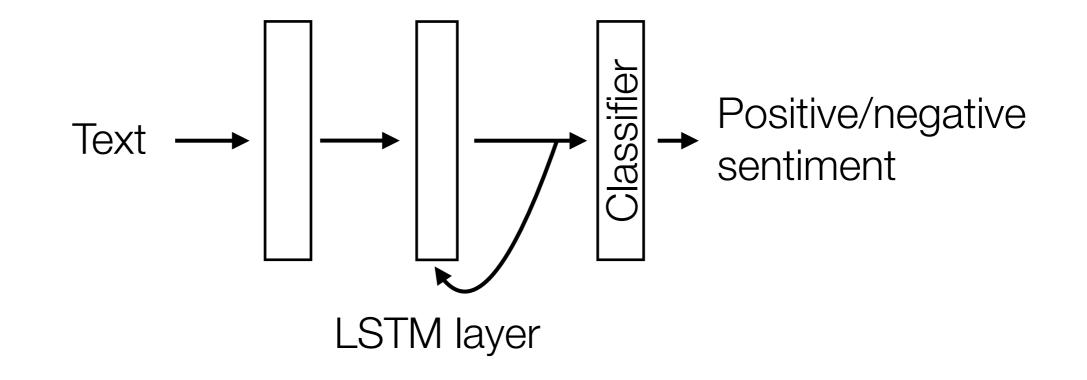
Recommendation: use LSTMs if you want to have longer memory (long range structure)

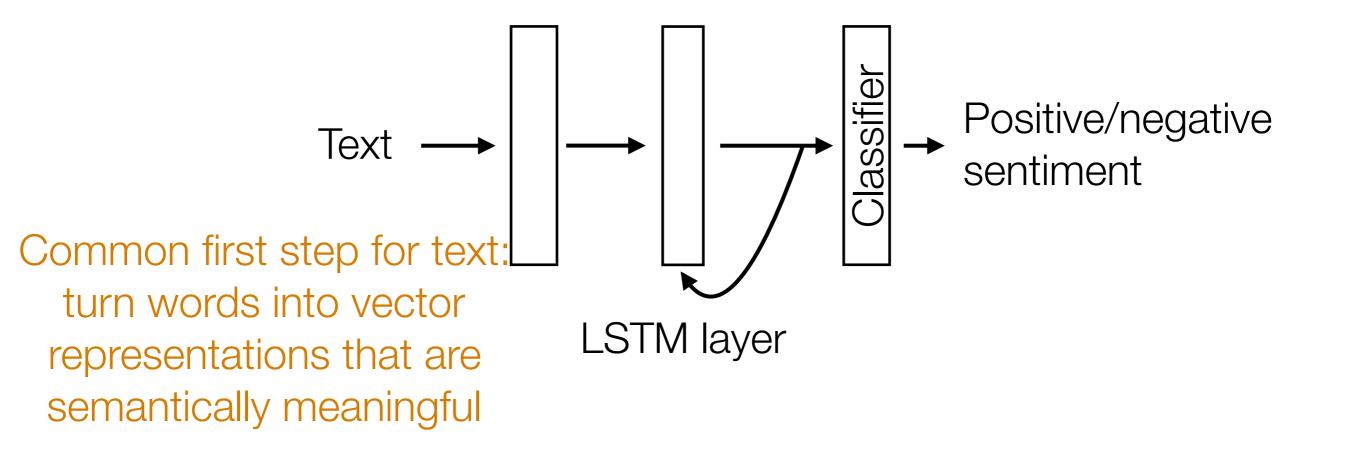


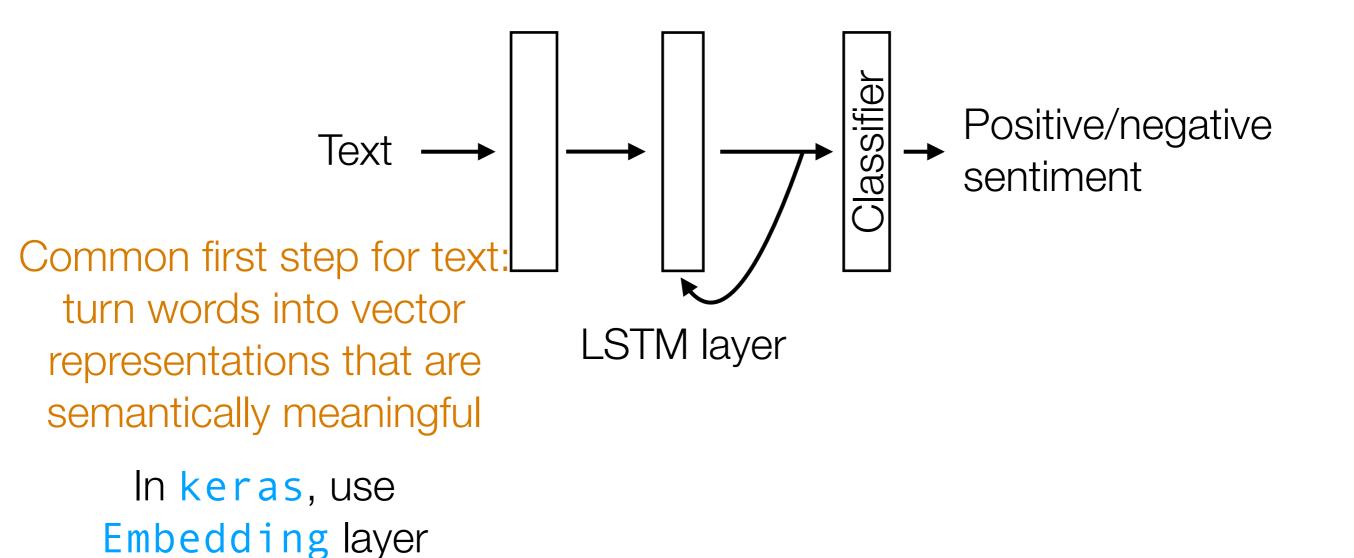
Time series

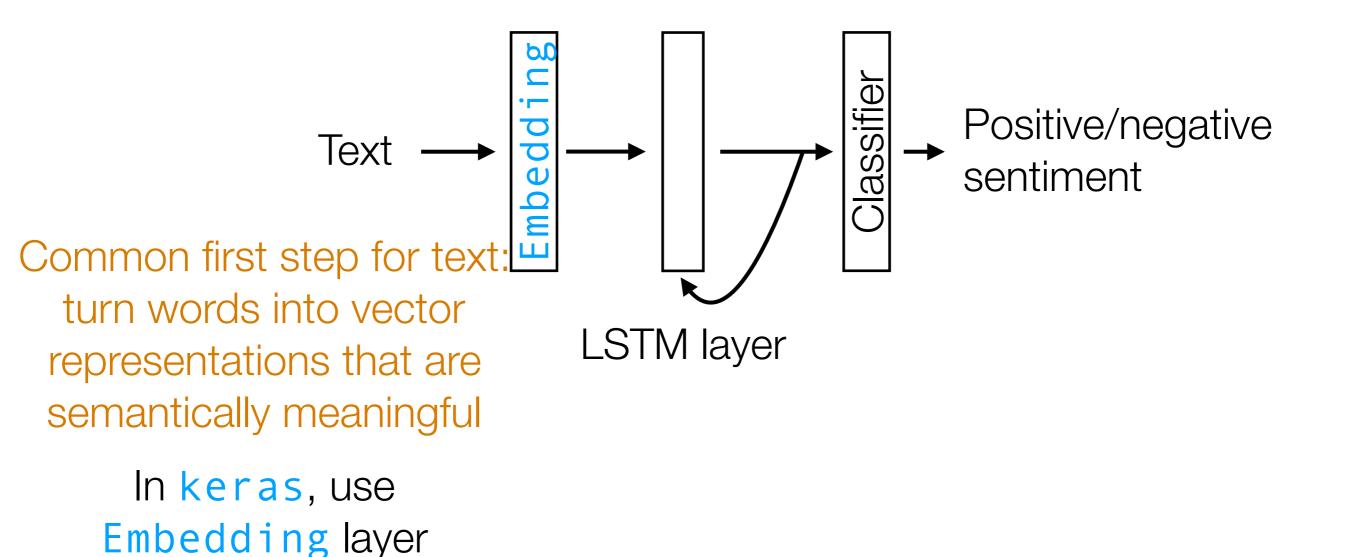
LSTM layer

lassif

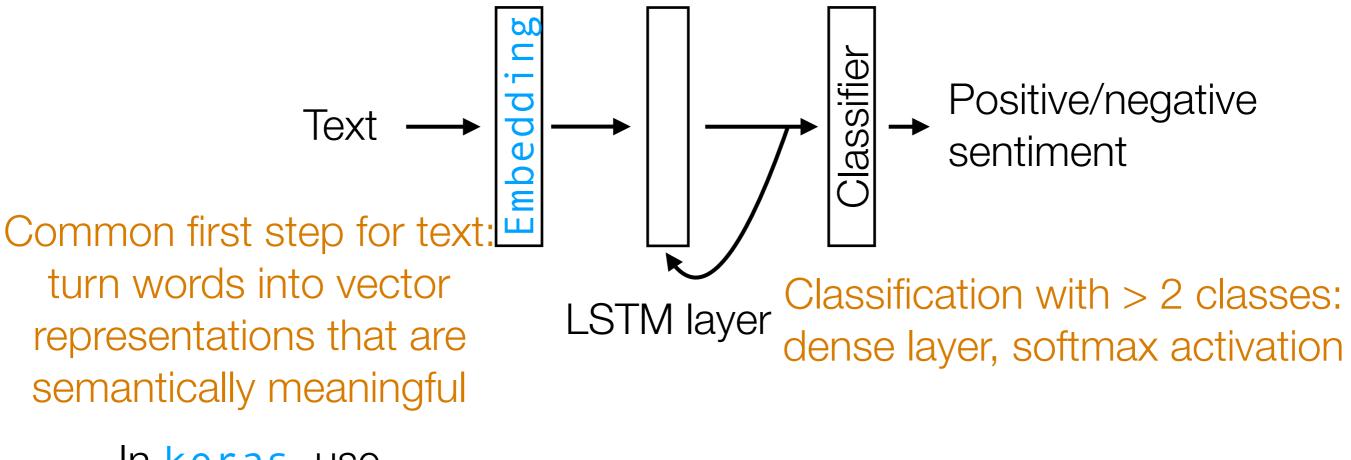




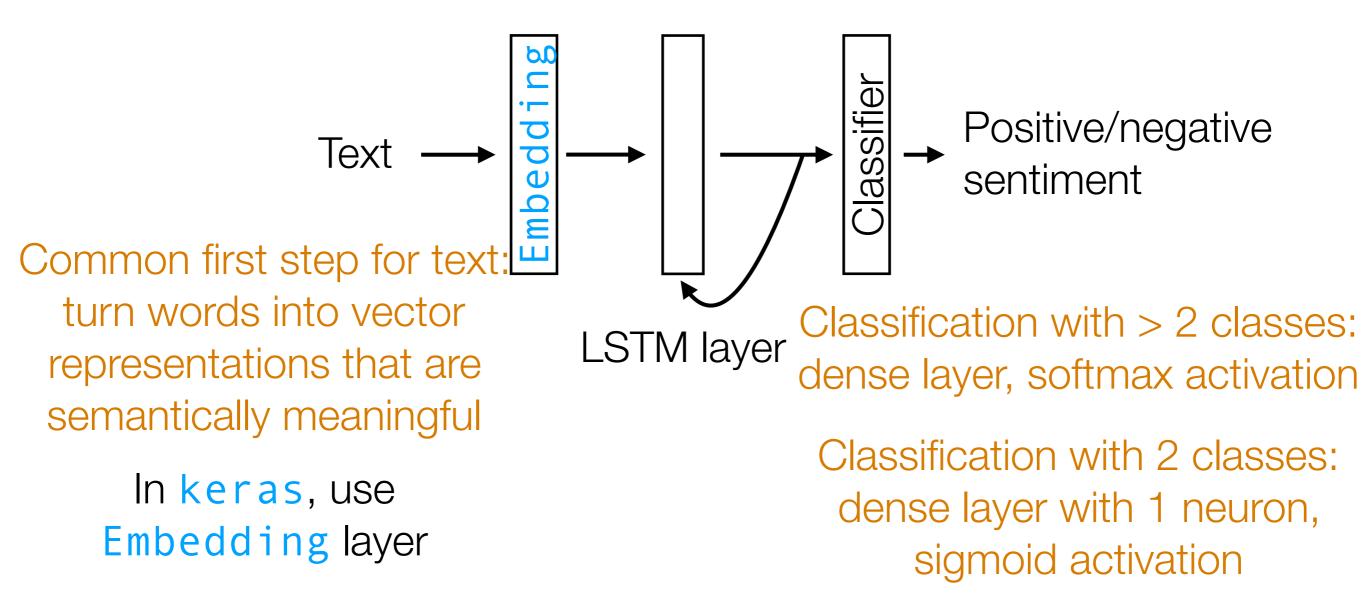




Example: Given text (e.g., movie review, Tweet), figure out whether it has positive or negative sentiment (binary classification)



In keras, use Embedding layer



Demo

• Neatly handles time series in which there is some sort of global structure, so memory helps

- Neatly handles time series in which there is some sort of global structure, so memory helps
 - If time series doesn't actually have global structure, performance gain from using RNNs could be little compared to using 1D CNNs

- Neatly handles time series in which there is some sort of global structure, so memory helps
 - If time series doesn't actually have global structure, performance gain from using RNNs could be little compared to using 1D CNNs
- An RNN layer should be chained together with other layers that learn a semantically meaningful interpretation from data (e.g., CNNs for images, word embeddings like word2vec/ GloVe for text)