
Deep Learning for Analyzing 
Images and Time Series

1 slide by Phillip Isola (OpenAI, UC Berkeley)
nearly all slides by George Chen (CMU)

CMU 95-865 Fall 2017
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Convolutional Neural Nets  

(CNNs, also called convnets)
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with ReLu activation 
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Pooling

• Aggregate local information

• Produces a smaller image 
(each resulting pixel captures some “global” information)
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What numbers were involved in computing this 1?
In this example: 1 pixel in max pooling output 

captures information from 16 input pixels!
Example: applying max pooling again results in a 

single pixel that captures info from entire input image!
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Basic Building Block of CNN’s

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 

and k kernels

Input image
max pooling 

(applied to each 
image in stack)

stack of images

output stack of 
smaller images



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image
dense layer with 

10 neurons, 
softmax activation

Training label: 6

Loss/“error” error
Popular loss function for 

classification (> 2 classes): 
categorical cross entropy

Error is 
averaged 

across training 
examples

dense layer 
with 512 

neurons, ReLU 
activation

1
Pr(digit 6)log

Learning this neural net 
means learning parameters 

of both dense layers!
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Handwritten Digit Recognition

28x28 image dense, 
softmax

Training label: 6

Loss

error

dense, 
ReLU

conv2d, 
ReLU

max 
pooling

2d

conv2d, 
ReLU

max 
pooling

2d

extract low-level visual 
features & aggregate

extract higher-level visual 
features & aggregate

non-vision-specific 
classification neural net
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CNN’s
• Learn convolution filters for extracting simple features

• Max pooling aggregates local information

• Can then repeat the above two layers to learn features from 
increasingly higher-level representations

• Convolution filters are shift-invariant

• In terms of invariance to an object shifting within the input 
image, this is roughly achieved by pooling
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RNNs
What we’ve seen so far are “feedforward” NNs

What if we had a video?
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treat each video frame 

separately

RNN’s: 
feed output at previous 

time step as input to 
RNN layer at current 

time step

In keras, different 
RNN options: 

SimpleRNN, LSTM

Recommendation: 
use LSTMs if you want 
to have longer memory 
(long range structure)

like a dense layer 
that has memory

LSTM layer

readily chains together with 
other neural net layers

CN
N

Time series
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RNNs

LSTM layer

Text Positive/negative 
sentiment

Example: Given text (e.g., movie review, Tweet), figure out whether 
it has positive or negative sentiment (binary classification)

Common first step for text: 
turn words into vector 

representations that are 
semantically meaningful

In keras, use 
Embedding layer

Em
be

dd
in

g

Cl
as

sifi
er

Classification with > 2 classes: 
dense layer, softmax activation

Classification with 2 classes: 
dense layer with 1 neuron, 

sigmoid activation
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RNNs

• Neatly handles time series in which there is some sort of 
global structure, so memory helps

• If time series doesn’t actually have global structure, 
performance gain from using RNNs could be little 
compared to using 1D CNNs

• An RNN layer should be chained together with other layers 
that learn a semantically meaningful interpretation from data 
(e.g., CNNs for images, word embeddings like word2vec/
GloVe for text)


